エチオピア連邦民主共和国
水エネルギー省
ソマリ州水資源局

エチオピア連邦民主共和国
ジャラル渓谷及びシェベレ川流域
水資源開発計画策定・緊急給水プロジェクト

最終報告書（5/7）
Godey市の給水計画に対するフィージビリティ・スタディ

平成25年8月
（2013年）

独立行政法人
国際協力機構（JICA）
国際航業株式会社
エチオピア国
ソマリ州
調査地域図
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>調査概要</td>
</tr>
<tr>
<td>1.1</td>
<td>はじめに</td>
</tr>
<tr>
<td>1.2</td>
<td>調査の目的</td>
</tr>
<tr>
<td>1.3</td>
<td>調査の範囲</td>
</tr>
<tr>
<td>1.4</td>
<td>資料収集</td>
</tr>
<tr>
<td>2</td>
<td>調査地域</td>
</tr>
<tr>
<td>2.1</td>
<td>調査位置</td>
</tr>
<tr>
<td>2.2</td>
<td>行政機構</td>
</tr>
<tr>
<td>2.3</td>
<td>地形状況</td>
</tr>
<tr>
<td>2.4</td>
<td>地質</td>
</tr>
<tr>
<td>3</td>
<td>社会経済調査</td>
</tr>
<tr>
<td>3.1</td>
<td>調査の方法</td>
</tr>
<tr>
<td>3.2</td>
<td>調査結果</td>
</tr>
<tr>
<td>3.2.1</td>
<td>人口</td>
</tr>
<tr>
<td>3.2.2</td>
<td>教育</td>
</tr>
<tr>
<td>3.2.3</td>
<td>保健衛生</td>
</tr>
<tr>
<td>3.2.4</td>
<td>水の消費量</td>
</tr>
<tr>
<td>3.2.5</td>
<td>支払意志額及び支払能力</td>
</tr>
<tr>
<td>4</td>
<td>水資源調査</td>
</tr>
<tr>
<td>4.1</td>
<td>降水量と気象</td>
</tr>
<tr>
<td>4.2</td>
<td>表流水資源</td>
</tr>
<tr>
<td>4.3</td>
<td>地下水資源</td>
</tr>
<tr>
<td>4.4</td>
<td>水質</td>
</tr>
<tr>
<td>4.4.1</td>
<td>地下水</td>
</tr>
<tr>
<td>4.4.2</td>
<td>シェベレ川</td>
</tr>
</tbody>
</table>
表 目 次

<table>
<thead>
<tr>
<th>表</th>
<th></th>
<th>頁</th>
</tr>
</thead>
<tbody>
<tr>
<td>表1.1</td>
<td>収集した資料</td>
<td>1-2</td>
</tr>
<tr>
<td>表3.1</td>
<td>調査地区の教育施設と生徒数</td>
<td>3-1</td>
</tr>
<tr>
<td>表3.2</td>
<td>調査地区の保健衛生施設と職員数</td>
<td>3-2</td>
</tr>
<tr>
<td>表3.3</td>
<td>水因性疾病患者の数</td>
<td>3-2</td>
</tr>
<tr>
<td>表3.4</td>
<td>Godey市における水利用調査結果</td>
<td>3-2</td>
</tr>
<tr>
<td>表3.5</td>
<td>用途別水消費量</td>
<td>3-3</td>
</tr>
<tr>
<td>表3.6</td>
<td>新規給水施設における水料金の支払い意志額</td>
<td>3-3</td>
</tr>
<tr>
<td>表3.7</td>
<td>Godey市の年間家計所得</td>
<td>3-4</td>
</tr>
<tr>
<td>表4.1</td>
<td>流域面積と流出高</td>
<td>4-1</td>
</tr>
<tr>
<td>表5.1</td>
<td>2012年から2020年までの人口予測</td>
<td>5-1</td>
</tr>
<tr>
<td>表5.2</td>
<td>現在の飲料水へのアクセス方法の割合</td>
<td>5-1</td>
</tr>
<tr>
<td>表5.3</td>
<td>人口規模ごとの飲料水アクセス方法の割合</td>
<td>5-2</td>
</tr>
<tr>
<td>表5.4</td>
<td>家庭用水需要量予測</td>
<td>5-2</td>
</tr>
<tr>
<td>表5.5</td>
<td>工業用水需要量予測</td>
<td>5-2</td>
</tr>
<tr>
<td>表5.6</td>
<td>公共用水需要量予測</td>
<td>5-3</td>
</tr>
<tr>
<td>表5.7</td>
<td>適用した最大係数</td>
<td>5-4</td>
</tr>
<tr>
<td>表5.8</td>
<td>水需要量の要約表</td>
<td>5-4</td>
</tr>
<tr>
<td>表6.1</td>
<td>シェベレ川水質試験結果</td>
<td>6-3</td>
</tr>
<tr>
<td>表6.2</td>
<td>浄水場施設の概要</td>
<td>6-5</td>
</tr>
<tr>
<td>表6.3</td>
<td>浄水池の概要</td>
<td>6-5</td>
</tr>
<tr>
<td>表6.4</td>
<td>各貯水槽の概要</td>
<td>6-6</td>
</tr>
<tr>
<td>表6.5</td>
<td>Godey市の配水管延長</td>
<td>6-6</td>
</tr>
<tr>
<td>表6.6</td>
<td>各配水管が給水するGodey市の給水区域</td>
<td>6-8</td>
</tr>
<tr>
<td>表6.7</td>
<td>現在の給水システムの課題とその対応策</td>
<td>6-8</td>
</tr>
<tr>
<td>表6.8</td>
<td>Godey市の既存給水システムの運転・管理に関わるスタッフ</td>
<td>6-9</td>
</tr>
<tr>
<td>表7.1</td>
<td>ポンプ場計画の代替案比較表</td>
<td>7-7</td>
</tr>
<tr>
<td>表7.2</td>
<td>取水及び送水ポンプの仕様</td>
<td>7-7</td>
</tr>
<tr>
<td>表7.3</td>
<td>ポンプ形式選定の比較検討</td>
<td>7-8</td>
</tr>
<tr>
<td>表7.4</td>
<td>沈殿池の設計基準と適用数値</td>
<td>7-12</td>
</tr>
<tr>
<td>表7.5</td>
<td>長さ幅比の代替案検討</td>
<td>7-13</td>
</tr>
<tr>
<td>表7.6</td>
<td>池高さの代替案検討</td>
<td>7-13</td>
</tr>
<tr>
<td>表7.7</td>
<td>沈殿池数と性能の相関</td>
<td>7-13</td>
</tr>
<tr>
<td>表7.8</td>
<td>粗ろ過選定の代替案検討</td>
<td>7-14</td>
</tr>
<tr>
<td>表7.9</td>
<td>管径と排水管の相関</td>
<td>7-16</td>
</tr>
<tr>
<td>表7.10</td>
<td>Godey市給水システムの設計概要</td>
<td>7-24</td>
</tr>
<tr>
<td>表8.1</td>
<td>Godey市給水計画の実施工程</td>
<td>8-4</td>
</tr>
<tr>
<td>表8.2</td>
<td>Godey市給水計画の建設経費</td>
<td>8-5</td>
</tr>
<tr>
<td>表8.3</td>
<td>Godey市給水計画の各年次の事業費</td>
<td>8-6</td>
</tr>
<tr>
<td>表8.4</td>
<td>物価変動を見込む月数</td>
<td>8-6</td>
</tr>
<tr>
<td>表8.5</td>
<td>物価変動を見込んだ各年次の建設経費</td>
<td>8-6</td>
</tr>
<tr>
<td>表8.6</td>
<td>Godey市給水計画の必要経費</td>
<td>8-7</td>
</tr>
</tbody>
</table>
表 8.7: Godey市給水計画の各年次の必要経費 ... 8-7
表 8.8: 物価変動を見込んだ各年次の必要経費 ... 8-7
表 8.9: Godey市給水計画の物価変動を見込んだ各年度の事業費 8-8
表 8.10: Godey市の計画給水システム運転・管理に関わるスタッフ総数 8-10
表 8.11: Godey市 給水の施設維持管理方針(1) .. 8-11
表 8.12: Godey市 給水の施設維持管理方針(2) .. 8-12
表 8.13: Godey市の計画給水システムの各施設の通常運営と維持管理に関わる
作業(1) ... 8-13
表 8.14: Godey市の計画給水システムの各施設の通常運営と維持管理に関わる
作業(2) ... 8-14
表 8.15: Godey市の計画給水システムの運営・維持管理費用 8-15
表 8.16: Godey市給水システムの2020年から2030年の維持管理と機材更新費用
.. 8-15
表 9.1: 現状と計画の運営・維持管理の比較 ... 9-5
表 9.2: 共通・河川水取水システムの運営維持管理 ... 9-6
表 9.3: 共通・WASHCO研修 ... 9-7
表 9.4: 共通・WASHCOフォローアップ研修 ... 9-8
表 9.5: 共通・住民の水衛生意識改善の研修 ... 9-9
表 9.6: Godey市 浄水施設の運営 ... 9-10
表 9.7: Godey市 浄水施設の運営のフォローアップ ... 9-11
表 9.8: Godey市 浄水場の維持管理 ... 9-12
表 9.9: Godey市 水質検査研修 ... 9-13
表 9.10: 共通会計と財務の研修 .. 9-14
表 10.1: Godey市における初期環境影響評価結果 ... 10-1
表 10.2: 予想される負の影響に対する緩和策 .. 10-2
表 11.1: Godey 市給水計画の経済的建設事業費 .. 11-1
表 11.2: 経済指標算定のためのキャッシュフロー ... 11-3
表 11.3: Godey市給水計画の財務的建設事業費 .. 11-4
表 11.4: 水道料金による運営・維持管理費用回収の検討 11-5
図 目 次

図 2.1: Godey市給水事務所の組織図 .. 2-1
図 2.2: Godey市周辺のLandsat画像（False Color） 2-2
図 2.3: ソマリ州の概略地質図（SHAAC, 2012） 2-3
図 2.4: Godey郡周辺の地質 ... 2-3
図 4.1: ソマリ州における一般的な雨季と乾季 4-1
図 4.2: 河川流出高と流域面積 ... 4-2
図 6.1: Godey市既存給水システムの概要 .. 6-2
図 6.2: JICA水質調査での採水地点 ... 6-4
図 6.3: 既存の配水管網及び公共水栓 .. 6-7
図 7.1: Godey市の取水地点 .. 7-2
図 7.2: Godey市給水計画システム図 .. 7-3
図 7.3: 新規取水施設の地点 ... 7-4
図 7.4: 取水施設の概要 ... 7-6
図 7.5: ポンプ場の概要 ... 7-8
図 7.6: 発電機小屋の概要 ... 7-10
図 7.7: 浄水場の概要レイアウト .. 7-11
図 7.8: 着水井の概要 ... 7-12
図 7.9: 沈殿池の概要 ... 7-14
図 7.10: 垂直流ろ過池の種類 ... 7-15
図 7.11: 粗ろ過池の概要 ... 7-15
図 7.12: 粗ろ過池と排水管路の概要 .. 7-16
図 7.13: 緩速ろ過池の概要 ... 7-17
図 7.14: 浄水池の概要 ... 7-17
図 7.15: 送水管ルート図 ... 7-18
図 7.16: 高架水槽の概要 .. 7-19
図 7.17: 各配水池の配水区域 ... 7-21
図 7.18: Godey市給水配水管計画図 ... 7-22
図 7.19: 公共水栓の概要 .. 7-23
図 7.20: 家畜用水飲み場の概要 ... 7-24
図 8.1: 概算事業費の項目 .. 8-1
図 9.1: Godey市給水事務所の組織図 ... 9-2
図 9.2: Godey市の短期－中期能力向上研修スケジュール 9-15
<table>
<thead>
<tr>
<th>略語</th>
<th>訳語</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABE</td>
<td>Alternative Basic Education</td>
</tr>
<tr>
<td>ARRA</td>
<td>Administration for Refugee and Returnee Affairs</td>
</tr>
<tr>
<td>BoFED</td>
<td>Bureau of Finance and Economic Development</td>
</tr>
<tr>
<td>BPR</td>
<td>Business Process Reengineering</td>
</tr>
<tr>
<td>CSA</td>
<td>Central Statistical Agency</td>
</tr>
<tr>
<td>CGIAR</td>
<td>Consultative Group on International Agricultural Research</td>
</tr>
<tr>
<td>CSE</td>
<td>The Conservation Strategy of Ethiopia</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical Oxygen Demand</td>
</tr>
<tr>
<td>C/P</td>
<td>Counterpart (organization or personnel)</td>
</tr>
<tr>
<td>DFID</td>
<td>Department for International Development</td>
</tr>
<tr>
<td>DF/R</td>
<td>Draft Final Report</td>
</tr>
<tr>
<td>DTH</td>
<td>Down the Hole Hammer</td>
</tr>
<tr>
<td>DPPB</td>
<td>Disaster Prevention and Preparedness Bureau</td>
</tr>
<tr>
<td>EC</td>
<td>Electric Conductivity</td>
</tr>
<tr>
<td>EIA</td>
<td>Environmental Impact Assessment</td>
</tr>
<tr>
<td>EPA</td>
<td>The Environmental Protection Authority</td>
</tr>
<tr>
<td>EPC</td>
<td>The Environmental Protection Council</td>
</tr>
<tr>
<td>ESA</td>
<td>European Space Agency</td>
</tr>
<tr>
<td>ESIA</td>
<td>Environmental and Social Impact Assessment Unit</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>EU-WATCH</td>
<td>Water and Global Change (WATCH) program funded by the European Union</td>
</tr>
<tr>
<td>EWTEC</td>
<td>Ethiopia Water Technology Center</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization of the United Nations</td>
</tr>
<tr>
<td>F/R</td>
<td>Final Report</td>
</tr>
<tr>
<td>F/S</td>
<td>Feasibility Study</td>
</tr>
<tr>
<td>GEM</td>
<td>Global Environment Monitoring</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographical Information System</td>
</tr>
<tr>
<td>GLCF</td>
<td>Global Land Cover Facility</td>
</tr>
<tr>
<td>GLG</td>
<td>Grass Land GIS</td>
</tr>
<tr>
<td>GMT</td>
<td>Greenwich Mean Time</td>
</tr>
<tr>
<td>GSE</td>
<td>Geological Survey of Ethiopia</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GUPE map</td>
<td>Groundwater Utilization Potential Evaluation map</td>
</tr>
<tr>
<td>IC/R</td>
<td>Inception Report</td>
</tr>
<tr>
<td>IEE</td>
<td>Initial Environmental Examination</td>
</tr>
<tr>
<td>IRC</td>
<td>International Rescue Committee</td>
</tr>
<tr>
<td>ISCGM</td>
<td>International Steering Committee for Global Mapping</td>
</tr>
<tr>
<td>IT/R</td>
<td>Interim Report</td>
</tr>
<tr>
<td>JICA</td>
<td>Japan International Cooperation Agency</td>
</tr>
<tr>
<td>JSS</td>
<td>JAXA Supercomputer System</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>JWSO</td>
<td>Jijiga Water Supply Office</td>
</tr>
<tr>
<td>MODIS</td>
<td>MODIS Land Cover Product by using Moderate resolution Imaging Spector radiometer of Earth-Observing-System EOS</td>
</tr>
<tr>
<td>MoFED</td>
<td>Ministry of Finance and Economic Development</td>
</tr>
<tr>
<td>MoWR</td>
<td>Ministry of Water Resources</td>
</tr>
<tr>
<td>MoWE</td>
<td>Ministry of Water and Energy</td>
</tr>
<tr>
<td>MrSID</td>
<td>Multi-resolution Seamless Image Database</td>
</tr>
<tr>
<td>NFE</td>
<td>Non Formal Education</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-Governmental Organization</td>
</tr>
<tr>
<td>NMA</td>
<td>(Addis Ababa) National Meteorology Agency</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NRCS</td>
<td>Natural Resources Conservation Service, United States Department of Agriculture</td>
</tr>
<tr>
<td>O&M</td>
<td>Operation and Maintenance</td>
</tr>
<tr>
<td>OJT</td>
<td>On the Job Training</td>
</tr>
<tr>
<td>POSTEL</td>
<td>Postal land surface thematic centre</td>
</tr>
<tr>
<td>PR/R</td>
<td>Progress Report</td>
</tr>
<tr>
<td>PA</td>
<td>Preliminary environmental assessment study</td>
</tr>
<tr>
<td>PALSAR</td>
<td>Phased Arrayed L-type Synthetic Aperture Radar</td>
</tr>
<tr>
<td>R/D</td>
<td>Record of Discussion</td>
</tr>
<tr>
<td>REA</td>
<td>Regional Environmental Agencies</td>
</tr>
<tr>
<td>RGSR</td>
<td>Regional Government of Somali Region</td>
</tr>
<tr>
<td>RWBs</td>
<td>Regional Water Bureaus</td>
</tr>
<tr>
<td>SAGE</td>
<td>Center for Sustainability And the Global Environment at the University of Wisconsin Madison</td>
</tr>
<tr>
<td>SEDAC</td>
<td>Socio-economic Data and Applications Center</td>
</tr>
<tr>
<td>SEPMEDA</td>
<td>Somali Regional State Environmental Protection, Mine and Energy Development Agency</td>
</tr>
<tr>
<td>SHAAC</td>
<td>Shaac Consulting Engineers</td>
</tr>
<tr>
<td>SRTM</td>
<td>Shuttle Radar Topography Mission</td>
</tr>
<tr>
<td>SRWDB</td>
<td>Somali Regional Water Resources Development Bureau</td>
</tr>
<tr>
<td>SWWCE</td>
<td>Somali Water Works and Construction Enterprise</td>
</tr>
<tr>
<td>TDM</td>
<td>Time Domain Method</td>
</tr>
<tr>
<td>TEM</td>
<td>Transient (or Time-domain) Electromagnetic Method</td>
</tr>
<tr>
<td>TOT</td>
<td>Training of Trainers</td>
</tr>
<tr>
<td>TVETC</td>
<td>Technical and Vocational Education and Training College</td>
</tr>
<tr>
<td>UAP</td>
<td>Universal Access Program</td>
</tr>
<tr>
<td>UNDP</td>
<td>United Nations Development Programme</td>
</tr>
</tbody>
</table>

A list of abbreviations commonly used in the context of water resources and environmental studies.
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNEP</td>
<td>United Nations Environment Programme</td>
<td>国連環境計画</td>
</tr>
<tr>
<td>UNHCR</td>
<td>United Nations High Commissioner for Refugees</td>
<td>国連難民高等弁務官事務所</td>
</tr>
<tr>
<td>UNICEF</td>
<td>United Nations Children’s Fund</td>
<td>国連児童基金</td>
</tr>
<tr>
<td>USDA</td>
<td>United States Department of Agriculture</td>
<td>米国農業省</td>
</tr>
<tr>
<td>USAID</td>
<td>United States Agency for International Development</td>
<td>米国国際開発庁</td>
</tr>
<tr>
<td>USGS</td>
<td>United States Geological Survey</td>
<td>米国地質調査所</td>
</tr>
<tr>
<td>UTM</td>
<td>Universal Transversal Mercator</td>
<td>ユニバーサル横メルカトル図法</td>
</tr>
<tr>
<td>VES</td>
<td>Vertical Electrical Sounding</td>
<td>垂直電気探査</td>
</tr>
<tr>
<td>WASH</td>
<td>Water Supply, Sanitation and Hygiene Program</td>
<td>水と保健と衛生の強化プログラム</td>
</tr>
<tr>
<td>WASHCO</td>
<td>Water Supply and Health Committee</td>
<td>水衛生組合</td>
</tr>
<tr>
<td>WATSANCO</td>
<td>Water, Sanitation & Hygiene Committee</td>
<td>給水保健衛生組合</td>
</tr>
<tr>
<td>WFP</td>
<td>World Food Programme</td>
<td>国連世界食料計画</td>
</tr>
<tr>
<td>WLR</td>
<td>Water Level Recorder</td>
<td>自記水位計</td>
</tr>
<tr>
<td>WMO</td>
<td>World Meteorological Organization</td>
<td>国連世界気象機関</td>
</tr>
<tr>
<td>WRI</td>
<td>World Resources Institute</td>
<td>世界資源研究所</td>
</tr>
<tr>
<td>WRIM</td>
<td>Water Resources Information Map</td>
<td>水資源情報図</td>
</tr>
<tr>
<td>WSDP</td>
<td>Water Sector Development Program</td>
<td>水セクター開発プログラム</td>
</tr>
<tr>
<td>WTP</td>
<td>Willingness to Pay</td>
<td>支払い意思額</td>
</tr>
</tbody>
</table>
1. 調査概要
1 調査概要

1.1 はじめに

Godey 市での給水計画のマスタープランは第 2 巻で検討し、概算事業費や実施計画も含めて記載しているが、実際の事業の実施に際しては Godey 市での運営維持管理状況の実態や財務評価等からみた検討も行う必要があるため、独立した報告書としてここに調査結果をまとめた。

1.2 調査の目的

Godey 市はシェベレ川流域の郡都市部では人口 29,379 人（2012 年）と最も規模の大きな都市であるが、現状の配管給水システムによる給水率は、最大受益者数を 7,500 人と想定して人口で除した場合 26%程度であり、ソマリ州都市部の平均給水率（74%、2012 年）と比較しても非常に低い。このため Godey 市は都市の規模に対応した給水状況になく、市としても給水状況の改善を切望している。その一方で給水施設の運営維持管理を担当する市給水事務所の実施体制、業務実施能力は脆弱とされており、給水施設の設置後の持続的な運営・維持管理の体制が構築できるか、また財務評価からも実現可能であるか検証する目的で調査を実施する。

1.3 調査の範囲

調査の範囲は 2011 年 12 月 23 日にエチオピア連邦民主共和国（以下エチオピア国）と国際協力機構（以下 JICA）により合意・署名された討議議事録（以下 R/D）に基づいて作成される「エチオピア国ジャラル渓谷及びシェベレ川流域水資源開発計画策定・緊急給水プロジェクト」の報告書の内容に順ずる。主な調査の手順は以下の通りである。

- 人口増加率に基づく水需要量を都市給水設計基準に基づき算出する。
- 既存の給水状況を把握しながら、給水源の選定を行う。
- 給水計画によって確定された給水源をもとに、取水場、水処理施設、貯水槽、配水システム、公共水栓および供給電源の計画を実施する。
- それぞれの施設の仕様と数量に基づき積算を行い、概算事業費の算出を行う。また実施計画についても立案する。事業予算計画を行い資金源の想定を行う。
- 現状の施設の運営維持管理状況を把握、評価する。計画された施設の運営維持管理費を算出する。
- 環境・社会配慮の観点から PA 調査（JICA ガイドラインにおける IEE 調査）を行い、緩和対策についても言及する。
- 給水計画の経済・財務評価を実施する。

1.4 資料収集

Godey 市の調査に際して利用した資料は、全体の調査を行うために収集した資料を引用した。主な資料は以下の表 1.1のとおりである。
表 1.1: 収集した資料

<table>
<thead>
<tr>
<th>No</th>
<th>データ項目</th>
<th>データと出典</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>衛星画像</td>
<td>SRTM, Landsat, ETE, PALSAR</td>
</tr>
<tr>
<td>3</td>
<td>既存文献</td>
<td>Wabi Sheele River Basin Integrated Development Master Plan Study Project (WWDSE, 2004)</td>
</tr>
<tr>
<td>4</td>
<td>気象水門</td>
<td>降水量データ、蒸発量データ、気温データ（National Meteorological Agency）、河川流量データ（MoWE）</td>
</tr>
<tr>
<td>5</td>
<td>施設設計関連</td>
<td>ソマリ州給水施設標準図面（2012） 改訂版 UAP（2010） 村落給水と衛生施設設計基準（MoWE, 2005） 都市給水設計基準（MoWE, 2006）</td>
</tr>
<tr>
<td>6</td>
<td>社会経済関連</td>
<td>社会経済調査データ（本調査） 人口データ（国家中央統計局） 物価データ（本調査）</td>
</tr>
</tbody>
</table>
2. 調査地域
2 調査地域

2.1 調査位置

Godey 市は、ソマリ州の中央部からやや南方側のシェベレ川沿いに位置する。Godey 市は緯度（N）43.58、経度（E）5.88（Godey 市の気象観測所）が概ねの位置である。

2.2 行政機構

市給水事務所は Godey 市と同じように 1 年半ほど前に郡から独立したばかりの新しい行政組織である。給水事務所は Godey 市政府の一機関であり、Godey 市の給水システムの運営・維持管理を行っている。8 ケ月前に関連機関等からの代表 7 人からなる水委員会が設置され、市の給水問題を扱う諮問機関となったが、現時点ではまだ機能しておらず、暫定的に給水事務所が市の給水問題に関する全権を担っている。給水事務所の決定は最終的に市政府の許可が必要である。2013 年 1 月に事務所の所長が交代し、これに伴い水委員会のメンバーも一部改定され、現在は以下の 10 名とされている。

議長：Godey 市長
副議長：Godey 副市長
書記：Godey 市給水事務所所長
委員：Godey 市財務事務所所長
Godey 市の女性問題事務所所長
Godey 市保健所長
Godey 市教育・能力向上事務所所長
Godey 市電力公社長
Godey 市の長老代表者
Godey 市の女性組合

事務所の職員は 31 名あり、そのうち 12 名が事務所勤務の職員である。組織は以下のようにになっている。事務所は郡水事務所と建物を共有しており、倉庫を含めた 4 部屋を占有する（図 2.1 参照）。

![組織図](image)

注）カッコ内の数値は各部署の人員数

図 2.1: Godey 市給水事務所の組織図
2.3 地形状況

Landsat 衛星画像（図 2.2参照）や現地の地形から見れば Godey 市周辺は比較的平坦な地形を呈しており市内の標高は 273m～300m 程度である。市の南側にシェベレ川が西北西から東流し、その箇所での標高が最も低く、市内では北に向かって標高を高じる。

![Godey市周辺のLandsat画像](image1.jpg)

図 2.2: Godey 市周辺の Landsat 画像（False Color）

2.4 地質

Godey 市の地質は、既存の地質図によれば周辺には前期白亜紀～後期ジュラ紀の Korahe 石膏層が広く分布し、その上位をシェベレ川流域等で崩積土、段丘礫層あるいは沖積層が覆う（図 2.3参照）。本層が形成する一般的な地形は、浅く枯渇した小流路からなる高密度の水系で区切られる起伏のある平野である。Korahe 石膏層の上部は苦灰岩層を伴う塊状の硬石膏が卓越する。下部は苦灰質石灰岩、マール、頁岩、硬石灰の互層で代表される。層厚は 100〜150m の間で変化するが、500m に達することもある。硬石膏の不透水性により、本層の上部は Ogaden 堆積盆の難帯水層となっている。Landsat 画像による地形地質解析の結果を Godey 郡でのデータとして図 2.4に示すが、第四紀層の Qa は前述のように段丘礫層の堆積物であるが、河床沿いの断面等から見ても層厚は 2m 以内であり、さほど厚くない。
図 2.3: ソマリ州の概略地質図（SHAAC, 2012）

図 2.4: Godey 郡周辺の地質

凡例は第1巻3章表3.2に同じ
3. 社会経済調査
3 社会経済調査

3.1 調査の方法

社会経済調査の内容は、(1) Godey 市水道事務所における聞き取り調査、および(2) Godey 市内の住民の中から選定されたサンプル世帯への聞き取り調査、である。

a. 都市部の給水状況調査

Godey 市水道事務所への聞き取り調査を実施し、市内の給水状況に関する基本的なデータを取得した。

調査項目は、人口、世帯数、水管理組織の有無、水利用状況、保健衛生状況、公的機関と私企業の数等である。

b. サンプル家庭調査

給水計画地域の住民の中から 40 世帯をサンプル世帯として選定し、そのうち 39 世帯から基本データを取得した。

調査項目は、家族構成、水汲み回数、水源までの距離、水汲み時間、水消費量、雨期と乾期別水源の種類、家計所得、家計支出、保健衛生状況、水料金の支払い意志額等である。

3.2 調査結果

3.2.1 人口

Godey 市の人口は 2012 年時点で 29,379 人である。人口は年率 2.91%で増加し、2020 年には 36,958 人に達する見込みである。

3.2.2 教育

Godey 市内には 13 の小学校と 2 つの中学校があり、生徒数は小学校で 5,902 人であるが、中学校の生徒数は不明である。(表 3.1参照)

<table>
<thead>
<tr>
<th></th>
<th>小学校</th>
<th>中学校</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>学校の数</td>
<td>生徒数</td>
</tr>
<tr>
<td>Godey 市</td>
<td>13</td>
<td>5,902</td>
</tr>
</tbody>
</table>

出典：社会経済調査、SHAAC社、2012年

3.2.3 保健衛生

市内には病院があり、医療専門家および職員数は合計で 184 名である。その他の保健衛生施設は保健衛生センター（HC）と保健ポストである(表 3.2)。
エチオピア国ジャラル渓谷及びシェベレ川流域水源開発
計画策定・緊急給水プロジェクト（ファイナルレポート F/S）

独立行政法人国際協力機構
国際航業株式会社

表 3.2: 調査地区の保健衛生施設と職員数

<table>
<thead>
<tr>
<th>市</th>
<th>病院</th>
<th>保健衛生センター</th>
<th>保健衛生ポスト</th>
<th>クリニック</th>
</tr>
</thead>
<tbody>
<tr>
<td>Godey</td>
<td>1</td>
<td>184</td>
<td>2</td>
<td>59</td>
</tr>
</tbody>
</table>

出典: 社会経済調査、SHAAC社、2012年

主要な水因性疾病は、マラリア、下痢症および赤痢である。Godey 市の2,700名の患者のうち、マラリアが67％、下痢症が22％、赤痢が2％となっている。Godey 市における年間の水因性疾病患者の数は表 3.3に示した。

表 3.3: 水因性疾病患者の数

<table>
<thead>
<tr>
<th>市</th>
<th>下痢症</th>
<th>赤痢</th>
<th>腸チフス</th>
<th>コレラ</th>
<th>マラリア</th>
<th>その他</th>
</tr>
</thead>
<tbody>
<tr>
<td>Godey</td>
<td>600</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>1,800</td>
<td>240</td>
</tr>
</tbody>
</table>

出典: 社会経済調査、SHAAC社、2012年

3.2.4 水の消費量

社会経済調査の補足調査として、Godey 市における水利用のサンプル調査を実施した。この調査では、Godey 市内において15世帯を選定し、日常の水利用状況に関する聞き取りを行ったものである。サンプル世帯のうち80％は水を水売り人から入手しており、残り20％の世帯では家庭の水道栓から水を入手している。現地調査での聞き取りでは、水売りからの価段はドラム缶(200リットル)1缶分を市内において15Birrで販売している。

a. 水の平均消費量

調査結果によれば、住民の一人当たり平均水消費量は、雨期で13.1リットル、乾期で21.7リットルである。水の入手源は家庭の水道栓または水売り人である。雨期には雨水の入手が可能であるため、水道栓や水売り人から入手する水の量は30％〜50％減少する。多くの家庭では200リットル入り容器のドラム缶を1〜2個用意しており、これらの容器に雨水を貯水している。中には庭先にビルカ型の貯水施設を設置している家庭もある。乾期には洗い流すため、あるいは乾いた喉を潤すため、雨期よりも多くの水を必要としている。そのため、乾期の方が雨期よりも水の消費量が多い。Godey 市における調査結果を表 3.4に示した。

表 3.4: Godey 市における水利用調査結果

<table>
<thead>
<tr>
<th>市</th>
<th>世帯当たり水消費量</th>
<th>一人当たり水消費量</th>
</tr>
</thead>
<tbody>
<tr>
<td>Godey</td>
<td>108 liters/day</td>
<td>13.1 liters/day</td>
</tr>
<tr>
<td></td>
<td>177 liters/day</td>
<td>21.7 liters/day</td>
</tr>
</tbody>
</table>

出典: 社会経済調査、SHAAC社、2012年

b. 用途別水消費量

Godey 市における乾期の一人当たり水消費量は雨期の1.5倍（洗濯用）から1.8倍（調理用）である。平均で見ると乾期の水消費量は雨期の1.6倍である。
Godey 市における用途別一人当たりの水消費量を表 3.5に示した。

表 3.5: 用途別水消費量

<table>
<thead>
<tr>
<th>用途</th>
<th>飲用</th>
<th>調理用</th>
<th>洗濯用</th>
<th>浴用</th>
</tr>
</thead>
<tbody>
<tr>
<td>季節</td>
<td>雨期</td>
<td>乾期</td>
<td>雨期</td>
<td>乾期</td>
</tr>
<tr>
<td>一人当たり水消費量</td>
<td>2.4</td>
<td>4.1</td>
<td>2.6</td>
<td>4.8</td>
</tr>
</tbody>
</table>

出典：社会経済調査、SHAAC社、2012年10月

3.2.5 支払い意志額及び支払い能力

a. 支払い意志額

新規の給水施設が建設された場合の水料金支払いへの意識は、サンプル世帯の所得レベルと水源の距離によって異なる。水料金への支払い意志額は 15 Birr（最低）から 250 Birr（最高）までさまざまなである。Godey 市の平均値は表 3.6に示すとおり、月額 67 Birrである。

表 3.6: 新規給水施設における水料金の支払い意志額

<table>
<thead>
<tr>
<th>調査地域</th>
<th>市</th>
<th>支払い意志額 (Birr/月)</th>
</tr>
</thead>
<tbody>
<tr>
<td>シェベレ川流域</td>
<td>Godey</td>
<td>15 250 67</td>
</tr>
</tbody>
</table>

出典：社会経済調査、SHAAC社、2012年

b. 支払い能力

b.1 家計所得データ

家計の所得項目は、作物生産、畜養、漁業、就労、送金、商業およびその他に分類される。Godey 市の家計所得は 1,800 Birr から 72,000 Birr の間で、平均値は 30,336 Birrである。Godey 市の年間家計所得データを表 3.7に示す。
表 3.7: Godey市の年間家計所得

<table>
<thead>
<tr>
<th>世帯コード</th>
<th>作物</th>
<th>畜養</th>
<th>渔業</th>
<th>就労</th>
<th>送金</th>
<th>商業</th>
<th>その他</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,800</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,800</td>
</tr>
<tr>
<td>002</td>
<td>0</td>
<td>2,800</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>48,000</td>
<td>0</td>
<td>50,800</td>
</tr>
<tr>
<td>003</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>54,000</td>
<td>0</td>
<td>0</td>
<td>54,000</td>
</tr>
<tr>
<td>004</td>
<td>10,500</td>
<td>8,600</td>
<td>0</td>
<td>0</td>
<td>31,842</td>
<td>0</td>
<td>0</td>
<td>31,842</td>
</tr>
<tr>
<td>005</td>
<td>6,000</td>
<td>10,600</td>
<td>0</td>
<td>10,536</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27,136</td>
</tr>
<tr>
<td>006</td>
<td>0</td>
<td>0</td>
<td>30,000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30,000</td>
</tr>
<tr>
<td>007</td>
<td>0</td>
<td>0</td>
<td>33,600</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>33,600</td>
</tr>
<tr>
<td>008</td>
<td>0</td>
<td>0</td>
<td>21,000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>21,000</td>
</tr>
<tr>
<td>009</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10,500</td>
<td>0</td>
<td>0</td>
<td>10,500</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>43,200</td>
<td>0</td>
<td>43,200</td>
</tr>
<tr>
<td>011</td>
<td>0</td>
<td>0</td>
<td>33,000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>33,000</td>
</tr>
<tr>
<td>012</td>
<td>15,600</td>
<td>4,700</td>
<td>0</td>
<td>0</td>
<td>41,760</td>
<td>0</td>
<td>0</td>
<td>41,760</td>
</tr>
<tr>
<td>013</td>
<td>16,000</td>
<td>8,600</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10,800</td>
<td>0</td>
<td>35,400</td>
</tr>
<tr>
<td>014</td>
<td>15,600</td>
<td>10,944</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>26,544</td>
</tr>
<tr>
<td>015</td>
<td>13,000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10,536</td>
<td>18,000</td>
<td>0</td>
<td>28,536</td>
</tr>
<tr>
<td>016</td>
<td>8,600</td>
<td>5,750</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10,800</td>
<td>0</td>
<td>25,150</td>
</tr>
<tr>
<td>017</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>43,200</td>
<td>0</td>
<td>0</td>
<td>43,200</td>
</tr>
<tr>
<td>018</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>21,600</td>
<td>0</td>
<td>0</td>
<td>21,600</td>
</tr>
<tr>
<td>019</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>54,000</td>
<td>0</td>
<td>0</td>
<td>54,000</td>
</tr>
<tr>
<td>020</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18,000</td>
<td>0</td>
<td>18,000</td>
</tr>
<tr>
<td>021</td>
<td>0</td>
<td>0</td>
<td>18,000</td>
<td>0</td>
<td>54,000</td>
<td>0</td>
<td>0</td>
<td>72,000</td>
</tr>
<tr>
<td>022</td>
<td>0</td>
<td>0</td>
<td>2,500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2,500</td>
</tr>
<tr>
<td>023</td>
<td>23,000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12,600</td>
<td>0</td>
<td>12,600</td>
</tr>
<tr>
<td>024</td>
<td>0</td>
<td>0</td>
<td>11,136</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11,136</td>
</tr>
<tr>
<td>025</td>
<td>0</td>
<td>0</td>
<td>26,400</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>26,400</td>
</tr>
<tr>
<td>026</td>
<td>0</td>
<td>0</td>
<td>22,200</td>
<td>0</td>
<td>18,000</td>
<td>0</td>
<td>0</td>
<td>50,700</td>
</tr>
<tr>
<td>027</td>
<td>15,000</td>
<td>8,500</td>
<td>0</td>
<td>18,000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>41,500</td>
</tr>
<tr>
<td>028</td>
<td>0</td>
<td>0</td>
<td>31,608</td>
<td>0</td>
<td>28,800</td>
<td>0</td>
<td>0</td>
<td>60,408</td>
</tr>
<tr>
<td>029</td>
<td>0</td>
<td>0</td>
<td>25,200</td>
<td>0</td>
<td>21,072</td>
<td>0</td>
<td>0</td>
<td>46,272</td>
</tr>
<tr>
<td>030</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>72,000</td>
<td>0</td>
<td>0</td>
<td>72,000</td>
</tr>
<tr>
<td>031</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3,500</td>
<td>0</td>
<td>3,500</td>
</tr>
<tr>
<td>032</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27,600</td>
<td>0</td>
<td>0</td>
<td>27,600</td>
</tr>
<tr>
<td>033</td>
<td>6,500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20,400</td>
<td>0</td>
<td>0</td>
<td>26,900</td>
</tr>
<tr>
<td>034</td>
<td>0</td>
<td>0</td>
<td>16,200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16,200</td>
</tr>
<tr>
<td>035</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18,000</td>
<td>0</td>
<td>0</td>
<td>18,000</td>
</tr>
<tr>
<td>036</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2,400</td>
<td>0</td>
<td>0</td>
<td>2,400</td>
</tr>
</tbody>
</table>

| 平均 | 2,225 | 950 | 1,500 | 6,982 | 3,846 | 13,950 | 1,075 | 30,336 |

出典: 社会経済調査、SHAAC社、2012年10月

b.2 支払い能力

水道利用者の支払い能力は、家計所得データから推測できる。都市部生活者の水料金の最大月額支払い可能額は所得の5%とされている。1

前項に示した家計所得データから、Godey市内の水道利用者の支払い能力は年間平均所得30,336 Birrであり、その5%にあたる1,516 Birrが年間の支払い可能額と推計される。これには月に126 Birrに相当する。従って、Godey市における水道料金の設定においては、この月額126 Birrを水料金の最大値として考慮することが可能である。

1 Water Supply and Sanitation Project, Project Appraisal Report, World Bank, 2004
4. 水資源調査
4 水資源調査

4.1 降水量と気象

Godey 郡における気象観測所は、Gode Town と Gode Met の 2 箇所であり、郡の周辺では Kalafo 郡で 1 箇所設置されているだけである。Gode Town と Gode Met の標高は 290m と 291m でほとんど等しく、年平均の降水量は観測期間の違いもあり若干異なる。Gode Town で 236mm（観測期間 2004 年〜2009 年）、Gode Met で 276.7mm（観測期間 1966 年〜2012 年）である。Godey 市を含む Godey 郡周辺の雨季と乾季は図 4.1に示した。主に Godey 郡周辺では 4 月〜6 月にかけて小雨季、10 月〜12 月にかけて本格的な雨季となる。

Wet and Dry Seasons in Somali Region

Godey 市の主たる水源はシェベレ川からの取水である。Godey 郷では内陸部では Birka の利用も検討される。シェベレ川は Godey 市の南側を西北西に東流する恒常河川である。シェベレ川沿いでは上流から下流域にかけて 10 箇所程度の水文観測所が存在し、流域面積と流出率の関係が算出されている（表 4.1参照）。また両者の関係は比較的よい相関が得られるため、シェベレ川の任意の地点での年間流出量の概算が算定できる（図 4.2参照）。

<table>
<thead>
<tr>
<th>Administrative Zones</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jilma dry season</td>
<td></td>
</tr>
<tr>
<td>Gu rains (Mid Apr ~ and June)</td>
<td></td>
</tr>
<tr>
<td>Hagee dry season (early Jul ~ and Sep)</td>
<td></td>
</tr>
<tr>
<td>Godey Town</td>
<td></td>
</tr>
<tr>
<td>Wabi Dodola</td>
<td></td>
</tr>
<tr>
<td>Wabi Burker</td>
<td></td>
</tr>
<tr>
<td>Wabi Kelafo</td>
<td></td>
</tr>
<tr>
<td>Wabi Hamaro</td>
<td></td>
</tr>
<tr>
<td>Wabi Gode</td>
<td></td>
</tr>
<tr>
<td>Wabi Dodola</td>
<td></td>
</tr>
<tr>
<td>Wabi Burker</td>
<td></td>
</tr>
<tr>
<td>Maribo</td>
<td></td>
</tr>
<tr>
<td>Wabi Melkadahanaka</td>
<td></td>
</tr>
<tr>
<td>Wehi Meregha</td>
<td></td>
</tr>
<tr>
<td>Wabi Kelafo</td>
<td></td>
</tr>
<tr>
<td>Wabi Lam</td>
<td></td>
</tr>
<tr>
<td>Wabi Gode</td>
<td></td>
</tr>
<tr>
<td>Wabi Dodola</td>
<td></td>
</tr>
<tr>
<td>Wabi Burker</td>
<td></td>
</tr>
<tr>
<td>Maribo confluence</td>
<td></td>
</tr>
</tbody>
</table>

図 4.1: ソマリ州における一般的な雨季と乾季

表 4.1: 流域面積と流出

<table>
<thead>
<tr>
<th>Depth of Runoff(mm)</th>
<th>197.96</th>
<th>112.82</th>
<th>20.87</th>
<th>36.04</th>
<th>53.31</th>
<th>25.92</th>
<th>1893.07</th>
<th>17.84</th>
<th>1062.87</th>
<th>361.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed Area(km²)</td>
<td>4,388</td>
<td>20,473</td>
<td>139,100</td>
<td>91,600</td>
<td>63,644</td>
<td>127,300</td>
<td>137</td>
<td>144,000</td>
<td>137</td>
<td>1,039</td>
</tr>
</tbody>
</table>

4-1
4.3 地下水資源

Godey 市の周辺の地質は、前出のように沖積層の層厚はさほど厚くなく、また石膏層が広く分布しているため飲用に適した地下水の確保が難しい。石膏層の上部は苦灰岩を伴う塊状の硬石膏が卓越する。下部は苦灰質石灰岩、マール、頁岩、硬石膏の互層で代表される。水質が悪いため管井戸で淡水の地下水を得ることは不可能である。そのため本層の分布域では下位の石灰岩層まで掘削しないと淡水は得にくい。ただし石膏層の層厚は最大 500m とされる。Godey 郡の中では、東部の Carmaare や北部の Hadhaave で既存の浅井戸が存在するが、現在では機能している井戸は少ない。このように Godey 郡での地下水水源の確保は難しく Godey 市では表流水に水源をもとめるのが得策である。

4.4 水質

4.4.1 地下水

今回の水質調査では Godey 市周辺での浅井戸のデータはなく、Godey 郡でハンド・ダッグウェルのデータを入手した。その水質でエチオピア基準を超えている項目は、TDS、塩素イオンおよび硬度であるが、Na イオンも WHO 基準を超えており、飲用では塩分過多の地下水であることが予想される。シェベレ川の上流域の West Ime 郡や Rasso 郡のポアホールやハンド・ダッグウェルでは WHO 基準より高くエチオピア基準よりも低い値のフッ素を含む地下水が認められるが、Godey 郡では発現していない。

4.4.2 シベレ川

Godey 郡のシェベレ川の水質は、濁度と硬度がエチオピア基準よりも高い値を呈している（エチオピア基準値: 濁度 7NTU、硬度 392mg/L）。前述のようにシェベレ川の上流域での West Ime 郡や Rasso 郡では、河川水も WHO 基準よりもフッ素が高く、また鉄はエチオピア基準を超えるものが存在する。ただし Godey 郡周辺ではフッ素や鉄は今回の水質検査では基準値以上の値を示すものは確認されていない。また河川の処理水の水質検査も実施したが、原水に比べれば濁度の値も 1/10〜1/100 に低下しているがそれでもエチオピア基準を超えており、濁度の解決に向けて今後給水計画に処理問題を十分に反映させる必要がある。
5. 人口と水需要
5 人口と水需要

5.1 現況と人口予測

2011年の人口は、まず衛星写真から家屋数を判読し、4,758世帯を確認した。次にゴデ市の一世帯当たりの平均人数6人を乗じて、28,548人が求められた。2011年の人口に社会経済調査で算定された年間人口増加率2.91%を乗じて、2012年から2020年までの人口予測を行った。ゴデ市の2012年から2020年までの人口予測値を表5.1に記す。

表5.1: 2012年から2020年までの人口予測

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>人口</td>
<td>29,379</td>
<td>30,234</td>
<td>31,114</td>
<td>32,019</td>
<td>32,951</td>
<td>33,910</td>
<td>34,897</td>
<td>35,913</td>
<td>36,958</td>
</tr>
</tbody>
</table>

2020年の予測人口は、36,958人と算定され、この数値を水需要計算に使用することとした。

5.2 水需要

5.2.1 家庭用水需要

ゴデ市の給水事務所によれば、2013年3月の時点で200世帯に対して水道メーターを設置しているとのことである。水道メーターを設置している全世帯はヤード給水により受水している。1世帯の平均人数は6人とされていることから、ヤード給水を受ける世帯数は1,200人と算定された。市内には3箇所の公共水栓が機能している。公共水栓1箇所当りの受益者数は900人と規定されており、全受益者数は2,700人と算定された。残りの人口はロバで配水する水売り人からの水の購入やシェベレ川から直接水を汲んでいる。現在の飲料水へのアクセス方法の割合を表5.2に要約する。

表5.2: 現在の飲料水へのアクセス方法の割合

<table>
<thead>
<tr>
<th>No.</th>
<th>飲料水へのアクセス方法</th>
<th>人口</th>
<th>パーセンテージ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ヤード給水</td>
<td>1,200人</td>
<td>4%</td>
</tr>
<tr>
<td>2</td>
<td>公共水栓</td>
<td>2,700人</td>
<td>9%</td>
</tr>
<tr>
<td>3</td>
<td>その他（水道以外）</td>
<td>25,479人</td>
<td>87%</td>
</tr>
<tr>
<td>合計</td>
<td></td>
<td>29,379人</td>
<td>100%</td>
</tr>
</tbody>
</table>

水エネルギー省(MoWE)は、下記の表5.3に示すような都市給水プロジェクトでの飲料水へのアクセス方法の割合を2003年に策定した。ここではゴデ市は中都市に分類されている。
エチオピア国ジャラル渓谷及びシェベレ川流域水資源開発
計画策定・緊急給水プロジェクト（ファイナルレポート F/S）
独立行政法人国際協力機構
国際航業株式会社

表 5.3: 人口規模ごとの飲料水アクセス方法の割合

<table>
<thead>
<tr>
<th>人口</th>
<th>各戸給水</th>
<th>ヤード給水</th>
<th>公共水栓</th>
<th>その他</th>
</tr>
</thead>
<tbody>
<tr>
<td>農村地域</td>
<td>60-80%</td>
<td></td>
<td>40-65%</td>
<td>20-40%</td>
</tr>
<tr>
<td>小都市 2,000-10,000</td>
<td>0-1%</td>
<td>20-30%</td>
<td>40-60%</td>
<td>10-40%</td>
</tr>
<tr>
<td>中都市 10,000-50,000</td>
<td>0.5-2%</td>
<td>30-50%</td>
<td>40-55%</td>
<td>8-15%</td>
</tr>
<tr>
<td>大都市 50,000-80,000</td>
<td>1-3%</td>
<td>40-65%</td>
<td>30-55%</td>
<td>2-4%</td>
</tr>
</tbody>
</table>

出典: プロジェクト計画、財務及び経済フイジビリティスタディ 1巻ツールキットと別添 MoWE, 2003

Godey 市給水計画は2020年の水道普及率を100%に設定しており、各人は配管接続給水のいずれかに属することとなる。現在の飲料水アクセス率を基に、2020年の各戸給水、ヤード給水、公共水栓は1:49:50と算定された。上記3形態の単位水需要量は都市給水設計基準に規定されており、それらは各々50lit/人/日、25lit/人/日、20lit/人/日と算定された。この結果、2020年の総家庭用水需要量は840.81m³/日と算定された(表5.4参照)。

表 5.4: 家庭用水需要量予測

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>人口</th>
<th>単位水需要量</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>人</td>
<td>lit/人/日</td>
<td>m³/日</td>
</tr>
<tr>
<td>各戸給水</td>
<td>370</td>
<td>50</td>
<td>18.50</td>
</tr>
<tr>
<td>ヤード給水</td>
<td>18,189</td>
<td>25</td>
<td>452.73</td>
</tr>
<tr>
<td>公共水栓</td>
<td>18,479</td>
<td>20</td>
<td>369.58</td>
</tr>
<tr>
<td>合計</td>
<td>36,958</td>
<td>-</td>
<td>840.81</td>
</tr>
</tbody>
</table>

注) lit: liter (リットル)

5.2.2 工業用水需要

工業用水需要量は社会経済調査結果を基に算定した。Godey郡役所は調査の中で、レストラン、工場、ガソリンスタンドの箇所数を回答している。水需要量計算上、レストラン1箇所では10席を有すること、ガソリンスタンド1箇所は一日当たり30人の顧客があることに想定した。これらの数量に調査結果を乗じ、工業用水需要の数量が算定された。単位水需要量は、都市給水設計基準に準じた。総工業用水需要量は、表5.5に示すように3.4m³/日と算定された。

表 5.5: 工業用水需要量予測

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>調査結果</th>
<th>算定数量</th>
<th>営業</th>
<th>単位水需要量</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>席</td>
<td>lit/日</td>
<td>m³/日</td>
</tr>
<tr>
<td>レストラン</td>
<td>31</td>
<td>310</td>
<td></td>
<td>10</td>
<td>3.10</td>
</tr>
<tr>
<td>工場</td>
<td>0</td>
<td>0</td>
<td>雇用者</td>
<td>5</td>
<td>0.00</td>
</tr>
<tr>
<td>ガソリンスタンド</td>
<td>2</td>
<td>60</td>
<td>顧客</td>
<td>5</td>
<td>0.30</td>
</tr>
<tr>
<td>合計</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.40</td>
</tr>
</tbody>
</table>

注) lit: liter (リットル)

5.2.3 公共用及び商業用水需要

a. 商業用水需要

ホテル用水需要が商業用水需要として算定された。ホテルの数は、社会経済調査結果
で9箇所と回答された。ホテル1箇所当たりベッド数10台と想定した。単位水需要量は、25lit/人/日であり、総商業用水需要量は2.25m^3/日と算定された。

b. 公共用水需要

公共用水需要量は、役所、学校、病院の水需要量からなる。これらの数値もまた社会経済調査から得られた。対象者1人当たりベッド1床当たりの単位水需要量は、都市給水設計基準でそれぞれ5lit/日、50lit/日と規定されている。総公共用水需要量は、62.40m^3/日と算定された(表5.6)。

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>調査結果</th>
<th>算定数量</th>
<th>単位</th>
<th>項目水需要量</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>役所職員</td>
<td>300</td>
<td>300</td>
<td>人</td>
<td>5</td>
<td>1.50</td>
</tr>
<tr>
<td>小学校生徒</td>
<td>5,902</td>
<td>5,902</td>
<td>人</td>
<td>5</td>
<td>29.51</td>
</tr>
<tr>
<td>中学校生徒</td>
<td>3,643</td>
<td>3,643</td>
<td>人</td>
<td>5</td>
<td>18.22</td>
</tr>
<tr>
<td>高校生徒</td>
<td>2,484</td>
<td>2,484</td>
<td>人</td>
<td>5</td>
<td>12.42</td>
</tr>
<tr>
<td>病院ベッド数</td>
<td>1</td>
<td>15</td>
<td>ベッド</td>
<td>50</td>
<td>0.75</td>
</tr>
<tr>
<td>合計</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>62.40</td>
</tr>
</tbody>
</table>

(注)lit : liter (リットル)

5.2.4 家畜用水需要

家畜用水需要量は、給水計画マスタープランで示すように家庭用、工業用、公共用各水需要合計量の20%と設定した。4種類の水需要量は合計908.86m^3/日と算定され、家畜用水需要量は181.77m^3/日となった。

908.86m^3/日×20% = 181.77m^3/日

5.2.5 漏水率

漏水率は、給水計画マスタープランと同様に上記水需要量合計値の30%と設定した。計算結果から、漏水量は327.19m^3/日と算定された。

(908.86m^3/日 + 181.77 m^3/日)×30% = 327.19 m^3/日

5.2.6 計画給水量の集計

一日平均計画給水量は、上記水需要量を合計したものである。給水施設は一日最大給水量の元で計画する必要がある。エチオピアでは計画給水量の算定は一日平均計画給水量に季節最大係数、一日最大係数、一時間最大係数を乗じる。これら全ての係数は、都市給水設計基準に規定されている(表5.7)。2020年のGodey市の人口は、エチオピア国内中都市となる。よって、本調査では中間値を採用し、季節最大係数で1.2を、日最大係数で1.3を適用した。
表 5.7: 適用した最大係数

<table>
<thead>
<tr>
<th></th>
<th>設計基準</th>
<th>適用値</th>
</tr>
</thead>
<tbody>
<tr>
<td>季節最大係数</td>
<td>1.0~1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>一日最大係数</td>
<td>1.0~1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>一時間最大係数</td>
<td>20,001~50,000人</td>
<td>1.9</td>
</tr>
</tbody>
</table>

一日最大計画給水量は取水施設、浄水場、送水管の計画に使用する。一時間最大計画給水量は、配水管システムの計画に使用する。算定した計画給水量を表 5.8 に要約する。

表 5.8: 水需要量の要約表

<table>
<thead>
<tr>
<th>No.</th>
<th>項目</th>
<th>営業</th>
<th>水需要量</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>家庭用水需要量</td>
<td>m³/日</td>
<td>840.81</td>
</tr>
<tr>
<td>2</td>
<td>工業用水需要量</td>
<td>m³/日</td>
<td>3.40</td>
</tr>
<tr>
<td>3</td>
<td>商業用水需要量</td>
<td>m³/日</td>
<td>2.25</td>
</tr>
<tr>
<td>4</td>
<td>公共用水需要量</td>
<td>m³/日</td>
<td>62.40</td>
</tr>
<tr>
<td>5</td>
<td>家畜用水需要量</td>
<td>m³/日</td>
<td>181.77</td>
</tr>
<tr>
<td>6</td>
<td>一日平均計画給水量 (No.1~No.5)</td>
<td>m³/日</td>
<td>1,090.63</td>
</tr>
<tr>
<td>7</td>
<td>漏水量</td>
<td>m³/日</td>
<td>327.19</td>
</tr>
<tr>
<td>8</td>
<td>一日平均計画給水量 (含漏水)</td>
<td>m³/日</td>
<td>1,417.82</td>
</tr>
<tr>
<td>9</td>
<td>季節最大一日計画給水量 (No.8×1.2)</td>
<td>m³/日</td>
<td>1,701.38</td>
</tr>
<tr>
<td>10</td>
<td>一日最大計画給水量 (No.9×1.3)</td>
<td>m³/日</td>
<td>2,211.79</td>
</tr>
<tr>
<td>11</td>
<td>一時間最大計画給水量 (No.10×1.9÷24)</td>
<td>m³/時間</td>
<td>175.10</td>
</tr>
</tbody>
</table>

5.2.7 消防用水水需要

消防用水水需要量は配水池計画に使用する。本水需要量は上記の水需要量とは目的が異なるため、別途算定した。消防用水需要量は都市給水設計基準に従い、配水池容量の10%に設定した。詳細な計算は、7.7 節配水池に記載する。
6. 既存給水状況
6 既存給水状況

6.1 既存給水率

一日当りの給水量は、取水ポンプ容量から約150m³と推定される。全水量が生活用水として使用された場合でも、最大受益者数は7,500人となり、既存給水率は最も高い場合でもわずか26％にしか過ぎないという事になる（Godey市の既存給水率はソマリ州の給水アクセス率（74％）と比較しても非常に低い）。

6.2 既存給水施設

6.2.1 給水施設の開発

a. 初期開発

Godey市の給水施設は1959年に建設された。初期の給水システムは、県知事公邸、政府事務所、病院、教会等の市内の主だった政府事務所や、公共施設に水を提供することを目的とした。取水施設、ろ過設備や浄水池がシェベレ川の近傍に建設され、高架水槽は市内の標高が最も高い地点に建設された。高架水槽から教会までに配水管が敷設され、途中に3箇所の公共水栓が設置された。

b. 給水施設の拡張

給水施設は街の拡大に伴って、1996年に拡張された。街の拡大の主な理由としては、1)遊牧民の定住化と、2)ソマリア難民の定住である。取水ポンプ場は、取水量を増加するためにシェベレ川沿いに移設した。加えて、新設の取水ポンプ場に対応して浄水量が増加するために、沈澱池が建設された。配水管は拡張され、6箇所の公共水栓が設置された。Godey市街地の住民のために増加された。

2000年以降は、浄水場の砂ろ過池、1,000m³のコンクリート製配水池、6箇所の公共水栓が建設された。しかしこれらの増強でもまだ、Godey市住民への水の供給は賄えていない。既存のGodey市給水システムの概要を図6.1に示す。
図 6.1: Godey 市既存給水システムの概要

注）破線の施設は故障中の物
6.2.2 取水ポンプ

当初はポンプ場に取水ポンプが2台設置されていた。交換部品の不足により、取水ポンプは効率的に修理することが出来ずにいた。Godey市経済事務所は、予備のポンプを所有していない。このため、彼らは一台の取水ポンプだけで運転をしている。彼らの取水ポンプを交換する場合には、予算不足により通常は中古品を設置している。その結果、交換したポンプも長期間の稼働は期待できず、大分短い期間で故障することも度々ある。

Godey市経済事務所の説明によれば、彼らは河川の濁度が高く、かつ水位がポンプ設置位置より高い場合は、取水ポンプを稼働させないとの事である。取水ポンプにはスクリーンが無いため河川水を直接取水しなければならず、そのためポンプが土粒子を必要以上に浄水場に吸い上げてしまうことによるものと思われる。このような状況では、彼らは原水を効果的に浄水する事は出来ないので、運転を中止する事になる。

6.2.3 水質と水処理状況

a. 水質

JICA調査ではシェベレ川の水質試験をGodey市の4箇所で実施した。更に以前にもWabi Shebele流域総合開発マスタープラン調査で水質試験を実施した。全水質分析結果を表6.1にまとめ、JICA調査での採水地点を図6.2に添付する。濁度はWHO基準と比較して非常に高い値となったため、浄水施設で減少させなくてはならない。硬度については、採水地点長は1km程度にもかかわらず結果は変動している。詳細な設計の前には追加調査が必要である。もし定常的に超えていれば、原水に石灰を注入する必要がある。

<table>
<thead>
<tr>
<th>項目</th>
<th>Unit(単位)</th>
<th>WHO</th>
<th>エチオピア基準</th>
<th>JICA No.1</th>
<th>JICA No.2</th>
<th>JICA No.3</th>
<th>JICA No.4</th>
<th>Wabi Shebele MP</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td>6.5-8.5</td>
<td>6.5-8.5</td>
<td>7.93</td>
<td>7.81</td>
<td>7.14</td>
<td>7.77</td>
<td>7.70</td>
</tr>
<tr>
<td>TSS (mg/l)</td>
<td>58</td>
<td>1,534</td>
<td>1,296</td>
<td>529</td>
<td>480</td>
<td>496</td>
<td>507</td>
<td>381</td>
</tr>
<tr>
<td>TDS (mg/l)</td>
<td>1000</td>
<td>1776</td>
<td>529</td>
<td>480</td>
<td>496</td>
<td>507</td>
<td>381</td>
<td>404</td>
</tr>
<tr>
<td>EC (mS/cm)</td>
<td>0.609</td>
<td>0.667</td>
<td>0.624</td>
<td>0.682</td>
<td>0.506</td>
<td>0.565</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td>5</td>
<td>7</td>
<td>449</td>
<td>556</td>
<td>541</td>
<td>509</td>
<td>475</td>
<td>490</td>
</tr>
<tr>
<td>CO3 (meq/l)</td>
<td><0.9</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Cl (mg/l)</td>
<td>250</td>
<td>533</td>
<td>50</td>
<td>60</td>
<td>50</td>
<td>65</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>Ca (mg/l)</td>
<td>366</td>
<td>195</td>
<td>325</td>
<td>200</td>
<td>79</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na (mg/l)</td>
<td>200</td>
<td>358</td>
<td>48</td>
<td>47</td>
<td>32</td>
<td>47</td>
<td>11</td>
<td>40</td>
</tr>
<tr>
<td>K (mg/l)</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn (mg/l)</td>
<td>0.1</td>
<td>0.13</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.10</td>
<td>-</td>
</tr>
<tr>
<td>Fe (mg/l)</td>
<td>0.3</td>
<td>0.4</td>
<td>0.17</td>
<td>0.08</td>
<td>0.17</td>
<td>0.15</td>
<td>0.02</td>
<td>0.20</td>
</tr>
<tr>
<td>Hardness (CaCO3 mg/l)</td>
<td>500</td>
<td>392</td>
<td>570</td>
<td>360</td>
<td>120</td>
<td>460</td>
<td>228</td>
<td>223</td>
</tr>
</tbody>
</table>

注）網掛けの項目はWHOの基準を超えているもの
図 6.2: JICA 水質調査での採水地点
b. 浄水場

断続的な電気の供給のため、Godey 市の給水システムは雨季には特に濁度が高いにもかかわらず、緩速砂ろ過を採用している。全浄水工程は、電気を使用せずに自然流下によっている（表 6.2 参照）。

表 6.2: 浄水場施設の概要

<table>
<thead>
<tr>
<th>No.</th>
<th>施設</th>
<th>建設年</th>
<th>寸法</th>
<th>個数</th>
<th>容量</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>沈殿池</td>
<td>1996</td>
<td>25.0m x 4.5m x 2.4m/cell</td>
<td>2</td>
<td>540.0m³</td>
</tr>
<tr>
<td>2</td>
<td>粗ろ過池</td>
<td>2009</td>
<td>11.5m x 3.5m x 1.6m/cell</td>
<td>4</td>
<td>257.6m³</td>
</tr>
<tr>
<td>3</td>
<td>緩速ろ過池2</td>
<td>2009</td>
<td>12.5m x 8.5m x 1.5m/cell</td>
<td>2</td>
<td>318.8m³</td>
</tr>
<tr>
<td>4</td>
<td>乾燥床</td>
<td>2009</td>
<td>6.2m x 4.4m x 0.7m/cell</td>
<td>1</td>
<td>19.1m³</td>
</tr>
</tbody>
</table>

緩速ろ過池 1 は 2007 年に建設されたが、現在は運用されていない。Godey 市給水事務所の説明では、ろ過池がフロックにより目詰まりを起こしてしまい、沈殿水がオーバーフローしてしまうとの事であった。この現象が頻繁に発生した結果、彼らは運転を中止した。その後ソマリ州水資源局は、粗ろ過池及び緩速ろ過池 2 を計画、建設した。

沈殿池は 2006 年に NGO の支援により、スラッジ搔寄せ機と硫酸アルミニウムの薬品注入ポンプを追加した。これらの機器は動電設備であるため、現地まで配電線が引き込まれていない現在は、使用できない状態である。そのため、Godey 市給水事務所はスラッジの撹出し作業等を人力で行っている。

c. 浄水池

浄水池はシェベレ川沿い区域の取水ポンプ場に近い場所に立地しており、両施設の距離は約 70m 程である。砂ろ過池 2 で浄化された水はこの浄水池に流入し、ここで塩素が注入される。寸法と容量を下記の表 6.3 に要約する。

表 6.3: 浄水池の概要

<table>
<thead>
<tr>
<th>浄水池</th>
<th>寸法</th>
<th>容量</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell No.1</td>
<td>9.5m x 5.5m x 4.0m</td>
<td>209m³</td>
</tr>
<tr>
<td>Cell No.2</td>
<td>4.8m x 5.5m x 4.0m</td>
<td>106m³</td>
</tr>
</tbody>
</table>

浄水を市内の配水池まで圧送する送水ポンプは、当初 3 台設置されていた。しかしその内 2 台は現在故障し、1 台のみが稼働している。

また、給水車も浄水池にアクセスして浄化された水を購入し、受益者に売っている。

d. 電源設備

発電機建屋は浄水池の横に建っており、2 台の発電機が掘り付けられている。しかし、その内の 1 台は状態が悪いため、残りの 1 台だけが取水ポンプや送水ポンプに電気を供給出来る状態であった。この時は午前中に取水ポンプに電気を供給し、午後は送水ポンプに電気を供給していた。この方法だと給水量は半日分に限定されていた。Godey 市給水事務所は、2012 年に追加の発電機を調達し、2013 年 4 月時点では 2 台の発電機が稼働している。1 台は取水ポンプに使用され、他の 1 台は送水ポンプに使用されている。現時
点では彼らは全日分の給水を実施している。

6.2.4 送水管

6 インチの uPVC パイプが、浄水池から市内の配水池まで敷設されている。全長は約 3,450m である。送水管のルートは、ほぼ直線の最短距離が選定されている。現在の送水管は、住宅地の開発以前に敷設された。特に配水池付近にある数件の住居は、送水管ルート上に建てられたため、現在は送水管の上に建っている。このような場所では、漏水が発生した場合でも修理をすることは難しい。

6.2.5 配水池

市内には 3 篇所の配水池が建設されている。最も古いものは、初期給水システムの一部として建設された。2009 年に USAID の支援で高架水槽が追加されたが、Godey 市の水不足を解決することが出来なかった。それは、この高架水槽が、現況の給水量を満たす容量が無かったからである。更なる投資が SRWDB により実施され、2010 年 9 月には 1,000m3 の容量を持つ配水池が完成した。しかし、同施設では市内周縁区域に届く十分な水圧を確保することができなかったため、Godey 市給水事務所は依然として古い高架水槽を使用しなければならない。古い高架水槽の容量は約 150m3 と、現在の一日給水量に対応する容量である。各配水池の概要を表 6.4 に示す。

<table>
<thead>
<tr>
<th>No.</th>
<th>タイプ</th>
<th>建設年</th>
<th>容量</th>
<th>資金源</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>円柱形高架水槽</td>
<td>1959</td>
<td>150m3</td>
<td>エチオピア政府</td>
</tr>
<tr>
<td>2</td>
<td>長方形状式高架水槽</td>
<td>2009</td>
<td>60m3</td>
<td>USAID</td>
</tr>
<tr>
<td>3</td>
<td>円柱形地上式配水池</td>
<td>2010</td>
<td>1,000m3</td>
<td>SRWDB</td>
</tr>
</tbody>
</table>

6.2.6 水運用形態

a. 配水管

Godey 市では 4 路線の配水管が敷設されている。配水管には uPVC パイプが主に使用されている。配水管が地上部に敷設されている場合には、亜鉛メッキ鋼管が敷設されている。総延長は約 20,020m であり口径は 37.5mm から 125mm である（表 6.5 と図 6.3 を参照）。

<table>
<thead>
<tr>
<th>口径</th>
<th>材質</th>
<th>延長</th>
</tr>
</thead>
<tbody>
<tr>
<td>125mm</td>
<td>uPVC</td>
<td>1,730m</td>
</tr>
<tr>
<td>113mm</td>
<td>uPVC</td>
<td>720m</td>
</tr>
<tr>
<td>100mm</td>
<td>uPVC</td>
<td>9,860m</td>
</tr>
<tr>
<td>75mm</td>
<td>uPVC</td>
<td>6,640m</td>
</tr>
<tr>
<td>50mm</td>
<td>uPVC</td>
<td>630m</td>
</tr>
<tr>
<td>37.5mm</td>
<td>uPVC</td>
<td>440m</td>
</tr>
<tr>
<td>合計</td>
<td></td>
<td>20,020m</td>
</tr>
</tbody>
</table>
図 6.3：既存の配水管網及び公共水栓
各配水管ルートにより給水される主な施設を以下の表 6.6に要約する。

表 6.6: 各配水管が給水する Godey 市内の給水区域

<table>
<thead>
<tr>
<th>No.</th>
<th>方角</th>
<th>主な施設</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>北西方向</td>
<td>軍キャンプ</td>
</tr>
<tr>
<td>2</td>
<td>北方向</td>
<td>総合病院、教会</td>
</tr>
<tr>
<td>3</td>
<td>南西方向</td>
<td>中心街、小規模商店街</td>
</tr>
<tr>
<td>4</td>
<td>南東方向</td>
<td>空港、国際機関、教会、総合病院、中心街</td>
</tr>
</tbody>
</table>

数カ所の配水管路は完全に破損している。それらは Godey 市給水事務所との現地調査で特定した(図 6.3参照)。これらの破損区間は早急に敷設し直し、現状を回復することが求められる。

b. 公共水栓と各戸給水

配水管網には 15 箇所公共水栓がある。初期の 3 箇所及び増設した 6 箇所の公共水栓は使用されておらず、これら 9 施設は故障している。Godey 市給水事務所の説明では、一度配水管が故障し運用が中止すると公共水栓もまた同様に運用を中止し、そのような状況が現在まで続いているとのことである。最新の 6 箇所の公共水栓は、配水池が建設された 2010 年に同時に建設された。3 箇所は現在も利用可能である(図 6.3参照)。

6.2.7 給水施設の課題と対応策

Godey 市給水システムの現在の課題とその対応策は、表 6.7に要約される。

表 6.7: 現在の給水システムの課題とその対応策

<table>
<thead>
<tr>
<th>No.</th>
<th>課題</th>
<th>対応策</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>不十分な給水量</td>
<td>取水量の増強</td>
</tr>
<tr>
<td>2</td>
<td>河川水の高い濁度</td>
<td>適切な濁度除去方法の策定</td>
</tr>
<tr>
<td>3</td>
<td>配水管での不十分な水圧</td>
<td>配水圧を増強させるための新規高架水槽の計画策定</td>
</tr>
<tr>
<td>4</td>
<td>給水区域の拡大</td>
<td>配水管網の拡張</td>
</tr>
<tr>
<td>5</td>
<td>公共水栓の活用の向上</td>
<td>恒久的な給水と運営のための WASHCO の設立</td>
</tr>
</tbody>
</table>

Godey 市給水システムの最も喫緊の課題は、現状の給水容量が市の人口と比較してかなり少ない事である。もし全給水施設が適正に稼働していたとしても、水道普及率は全人口の 30%にも届かないと推定される。従って、詳細な給水計画を策定し、具体的な実施計画を進めて給水率を向上させる事が、第一優先順位である。技術的な課題としては、シェベレ川の水は高い濁度を有しているので、Godey 市給水事務所の運営・維持管理スタッフにも対応可能な適切な濁度除去方法を策定することである。
6.2.8 既存施設の運営維持管理

a. Godey市給水事務所の管轄する給水システム

Godey市内には6箇所の公共水栓があるが、1箇所は故障している。各戸給水ポイントは350軒ある。公共水栓では水は無料で配られている。これは市内の貧しい住民への対策とされている。各戸給水の顧客に対しては1m³あたり15Birrの水道料金が課せられている。支払いは請求書に基づいて行われるが、請求業務は必ずしも毎月定期的に行われているわけではない。顧客は各戸給水栓の登録が350戸、その他に大学や政府機関等の大口の顧客が6箇所であり、大口の水道料金は一般顧客と同じである。その他に道路工事等のための給水車への水の販売も行っている。

b. Godey市の給水施設維持管理活動

Godey市では給水システムの運転はGodey市給水事務所のフィールドスタッフにより行われている。給水システムを構成する各施設は市内でのその配置がまとまっており、3つの施設群に区分することが出来る。それぞれの施設群に関わる人員は合計で15名である（表6.8参照）。

<table>
<thead>
<tr>
<th>施設群</th>
<th>技術者</th>
<th>オペレーター</th>
<th>警備員</th>
<th>配管工</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>取水施設、ポンプ場、浄水池</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>浄水場</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>配水池</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>送配水管路</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>各スタッフ合計</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>15</td>
</tr>
</tbody>
</table>

市内の配水池のみ給水事務所の内勤スタッフが交代で管理している他は、すべて専属の常駐フィールドスタッフが運転を担当している。発電機やポンプの運転に携わる主要なスタッフは上表の技術者とオペレーターの各2名であり、各1名のペアで隔日のシフトで作業を行っている。作業内容は、3巻の3章に示したとおり、ポンプ・発電機の運転や浄水場の定期的な堆積物除去の他に、管路の修理が行われる。特に取水パイプは現在川の自然流路中に直接取水口が設置されており、先端のスクリーンの清掃が必要な他に、雨季の溜流や漂流物により損傷を受けるため、定期的な修理・交換が不可欠になっている。施設で利用されている発電機およびポンプはそれぞれ一台のみで予備は無いが、定期的なメンテナンス作業は行われていない。施設の清掃等では必要に応じて数人から20人程度の現場作業員を雇用し、技術者とオペレーターの指導の下、人力で作業を行う。
配管路については定期的な検査は行われておらず、日常業務の中で入手した情報に基づき5ヶ月に一度程度の頻度で配管路全体の一斉修理・補修を行っている。

スタッフのうち技術者（technician）とオペレーターは全員が初等教育のみを受けた人材であるが、技術者の2名はオペレーターに比べて経験が長く、更にそのうち一人は過去に合計数ヶ月程度の関連分野の研修を受けている。業務は技術者の指示の下に主にオペレーターが実施している。市内中心部の配水池（3箇所）では定期的な清掃の他に毎日の配水池の水位の確認とこれに応じたバルブの開閉作業を行うが、これは給水事務所の技術者が担当している。給水事務所の技術者は多くがTVETC卒業レベルであるが、業務経験が浅く現場経験が少ない。

現在のところ、上記の複数の施設の運転・維持作業を実質的に4名のスタッフで行っているため、早朝から夜遅くまでの運転に加えて不測自体への対応が必要になり、スタッフの負担が大きい。
7. 給水計画と施設設計
7 給水計画と施設設計

7.1 はじめに

現在の給水システムは既に老朽化しており、かつ Godey 市全体の人口に給水出来る容量も無い。現在の給水システムを残した場合には、Godey 市の人口に対して十分な給水を達成する事が出来ない。因って、本給水計画は全給水施設を新規に計画するものとする。

7.2 給水源

a. 現在の状況

現在、シェベレ川は Godey 市の唯一の水資源である。河川水の高い濁度のため、本調査は浅層地下水開発の可能性を検討した。Godey 市の地質条件では、地下水が期待できるのは地表面から数メートル以内だけである。通常河川水の水位は、期待される浅層帯水層よりも低いため、河川から水のリチャージを期待する事はほぼ不可能である。更に Godey 市での現地調査では、浅層地下水を使用しているとの情報は得られなかった。従って、給水計画はシェベレ川の水のみを利用する。

Godey 市にはシェベレ川に対する 5 箇所の主な取水地点がある。第一地点は、Godey 市水事務所が既存の給水システムとして使用している地点である。三地点は個人の水売り人により開発された取水地点である。彼らは河川にエンジンポンプを据付け、内地にある溜池に河川水を引き込む。彼らは導水した水を池に貯め、ロバを使った水売り人に売る。最後の地点は住民が自由に利用している取水地点である。この地点は住民や家畜が徒歩で唯一アクセス出来、取水出来る場所である。ここは容易に河川水にアクセス出来るが、河川水位の季節的な変動の影響を受ける。住民は水位が高い、濁度が高い等の理由により、雨季には取水する事が出来ない。そのため、彼らは雨季には溜池の雨水にアクセスすることになる。自由アクセス取水地点は 5 箇所の中で最も上流側に位置し、既存の Godey 市給水システムの取水地点は下流側に位置している。現在のように飲料水取水地点が自由アクセス取水地点より下流側であるにもかかわらず、河川水は十分に希釈されており、水質への悪影響は無い。しかしながら、住民は下流側地点から取水する事に対して否定的な心象を持っててしまう。因って、新規取水地点は、自由アクセス取水地点の上流側に提案する。上流側の取水地点は配水池地点に対して距離が近いので、既存の取水地点から取水する事と比較して、初期投資費用が少なく済むという利点もある。Godey 市の各取水地点の場所を図 7.1に示す。また、Godey 市給水システム計画のシステム図を図 7.2に示す。
図 7.1: Godey 市の取水地点
国際航業株式会社

図 7.2: Godey 市給水計画システム図
b. 取水計画

計画する取水地点の地形状況を図7.3に示す。当初の取水地点は、河川湾曲区間の中心部であった。同地点は既存の自由アクセス取水地点の上流側で、約100m地点である。同地点での雨季の激流による侵食リスクを勘案して、代替地点の検討を行った。一般には、河川湾曲区間の下流部が、取水施設建設に最適である。しかし、同地点は既に自由アクセス取水地点として利用されている。変更取水地点は、シェベレ川上流側に移動させた。現在の新規取水地点として提案している場所は、現地アクセスの容易さと新規貯水槽地点までの近距離という2点で他地点より優位である。新規取水地点がシェベレ川の更に上流部となりば、上記の優位点は確保されない。また、更なる上流部はGodey市境の外になるため、治安上の課題が発生する可能性がある。これらの条件を考慮すれば、同場所内で移転させる方が望ましい。因って変更地点は、当初地点の上流側約60m地点とした。

図7.3：新規取水施設の地点

変更地点もまだ湾曲区間に位置しており、侵食の可能性がある。そこで、以下の河川保護工が計画された。

(1) 河川法面の擁壁工
(2) 河床の石張り工

擁壁工は法面を河川流による侵食から保護する目的がある。石張り工は洗掘により河床が洗われる事から保護し、取水地点周辺の河川流を安定させるために供される。

前章で記載したように、現在の取水ポンプは河川から水を直接取水しており、この事がポンプ寿命の短縮や、水質悪化の一因となっている。提案した取水施設には、20m区間の取水路や吸込水槽を備えることで、これらを低減させる。比較的大きな土粒子は、取水路や吸込水槽で沈殿することになる。これらの施設は、取水ポンプに対する負荷を
c. 概略設計

c.1 石張り工

石張り工は取水路の取水口周辺に配置される。石張り工の寸法は、長さ 12.6m 及び幅 5.0m、厚さ 0.5m である。設置箇所は常に浸潤状態であるため、工事には水換えが必要となる（図 7.4参照）。

c.2 擁壁工

擁壁工は練石積みで建設される。擁壁工は取水路両側 5m 区間に計画する。高さは地表面までの 4.5m とし、全法面区間が保護されることになる。

c.3 取水路

取水路はコンクリート製の開水路を計画する。寸法は長さ 20m、幅 2m、高さ 0.5m である。法面は高さ 4.2m の練石積み工である。固形物が吸込水槽に侵入するのを防御するために、鋼鉄製スクリーンを取水路の両端部に設置する。また、角落しを流入部スクリーン前に設置する。

c.4 吸込水槽

吸込水槽は取水ポンプ場の真下に計画される。河川水は長さ 5.7m、幅 1.5m、高さ 5.65m の水槽部分に流入する。床部分の標高は河川水を恒常的に貯水するために、取水路よりも 0.5m 低く設定した。
7.3 ポンプ場

a. ポンプ場計画

Godey市給水計画では2種類のポンプを設置する。一つは沈殿池まで揚水する取水ポンプであり、他の一つは配水池まで揚水する送水ポンプである。ポンプ場の配置計画では、2種類の代替案を検討した（表7.1参照）。第一の計画案は、送水ポンプを浄水場と市街地の間に設置するものである。第二の計画案は、送水ポンプ場と取水ポンプ場を同じ場所に計画するものである。第二案は施設設備数が第一案より少ない分、運営維持管理費が安価で済む。因って運営維持管理費用の点から第二案を選定し、取水ポンプと送水ポンプを一箇所に設置する計画とした。
エチオピア国ジャラル渓谷及びシェベレ川流域水資源開発
計画策定・緊急給水プロジェクト（ファイナルレポート F/S）
独立行政法人国際協力機構
国際航業株式会社

表 7.1: ポンプ場計画の代替案比較表

<table>
<thead>
<tr>
<th>項目</th>
<th>代替案 1</th>
<th>代替案 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>計画案</td>
<td></td>
<td></td>
</tr>
<tr>
<td>送水管延長</td>
<td>4,700m</td>
<td>5,000m</td>
</tr>
<tr>
<td>ポンプ場と発電機建屋</td>
<td>2箇所</td>
<td>1箇所</td>
</tr>
<tr>
<td>発電機</td>
<td>4台</td>
<td>3台</td>
</tr>
<tr>
<td>維持管理要員</td>
<td>多くの職員が必要</td>
<td>職員は少なくて済む</td>
</tr>
<tr>
<td>スペアパーツ、消耗品</td>
<td>多くの部品が必要</td>
<td>部品は少なくて済む</td>
</tr>
</tbody>
</table>

b. 概略設計

2,212m³/日である計画給水量は、1台のポンプで給水制御を行うには断続的な運転となる可能性があり、設備への負荷が大きくなる。そこでポンプ2台での給水が計画され、1台のポンプを予備用として計画した。取水ポンプと送水ポンプは夫々3台ずつ設置する。

一日のポンプ稼働時間は、送水ポンプでは給水マスタープランに沿って10時間とした。取水ポンプでは、滑違い過済習慣のため24時間とした。但し、送水ポンプが稼働しない14時間は、滑違い過済の生物膜の活動を維持することを目的とするため、ポンプ1台での運転とする。計画揚水量は以下のとおりである。

取水ポンプ: \[Q_{p1} = 2,212 \text{m}^3/\text{日} \div (2\text{台} \times 10\text{時間} + 1\text{台} \times 14\text{時間}) \div 60 \text{分} \]
\[= 1.08\text{m}^3/\text{分} \approx 1.1 \text{m}^3/\text{分} \]

送水ポンプ: \[Q_{p} = 2,212\text{m}^3/\text{日} \div 10\text{時間} \div 60\text{分} + 2\text{台} = 1.84\text{m}^3/\text{分} \approx 1.9 \text{m}^3/\text{分} \]

各ポンプの全揚程は、夫々の対象構造物の標高や管路の摩擦損失を考慮して算定した。ポンプの仕様は以下のとおりである（表 7.2）。

表 7.2: 取水及び送水ポンプの仕様

<table>
<thead>
<tr>
<th>項目</th>
<th>単位</th>
<th>取水ポンプ</th>
<th>送水ポンプ</th>
</tr>
</thead>
<tbody>
<tr>
<td>流量</td>
<td>m³/分</td>
<td>1.1</td>
<td>1.9</td>
</tr>
<tr>
<td>全揚程</td>
<td>m</td>
<td>15</td>
<td>59</td>
</tr>
<tr>
<td>原動機出力</td>
<td>kW</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>ポンプ回転数</td>
<td>rpm</td>
<td>1500</td>
<td>3000</td>
</tr>
<tr>
<td>台数</td>
<td>nos.</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

ポンプ形式を決定するために、数種類の代替案を検討した。選定規準は、価格と維持管理の容易さとした。横軸式の場合はポンプと吸込管の間を充水する目的で、運転開始時の真空ポンプが追加で必要となる。縦軸式は真空ポンプを必要とせず、運転開始は容易である。その代わりに縦軸式は横軸式と比べ高価であり、かつメンテナンス作業が複雑となる。費用が安くてすみ、メンテナンスも容易であるので、今回は横軸式を選定した。吸込形式に関しては、片吸込は両吸込よりも安価であり、今回は片吸込とした。この結果本給水計画では、片吸込横軸式渦巻きポンプの計画となった。代替案検討結果を表 7.3に要約する。
表 7.3: ポンプ形式選定の比較検討

<table>
<thead>
<tr>
<th>No.</th>
<th>項目</th>
<th>代替案 1</th>
<th>代替案 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ポンプ形式</td>
<td>横軸式</td>
<td>縦軸式</td>
</tr>
<tr>
<td>1.1</td>
<td>費用</td>
<td>安価</td>
<td>高価</td>
</tr>
<tr>
<td>1.2</td>
<td>運転</td>
<td>真空ポンプ要</td>
<td>直接稼働</td>
</tr>
<tr>
<td>1.3</td>
<td>メンテナンス</td>
<td>簡易</td>
<td>複雑</td>
</tr>
<tr>
<td>2</td>
<td>吸込形式</td>
<td>片吸込</td>
<td>両吸込</td>
</tr>
<tr>
<td>2.1</td>
<td>費用</td>
<td>安価</td>
<td>高価</td>
</tr>
</tbody>
</table>

取水ポンプは吸込式であるため、キャピテーション発生の有無を検討した。取水ポンプが以下の式を満たせば、キャピテーション発生の心配は無い。

\[
H_{SV} > 1.3 \times h_{SV}
\]

但し、

\[H_{SV} : \text{取水ポンプが利用できる有効吸込水頭} (3.55m) \]

\[h_{SV} : \text{取水ポンプが必要とする吸込水頭} (1.50m) \]

\[3.55m > 1.95m = 1.3 \times 1.50m \]

加えてポンプのメンテナンス時に移動出来るよう、天井クレーンをポンプ場内に設置する（図 7.5参照）。

図 7.5: ポンプ場の概要
7.4 電気供給

a. 給電計画

現在Godey市の電気供給容量は700kWであり、電気供給は夜間に限定される。エチオピア電力会社は送電線開発のプロジェクトを進めており、現在建設中である。変電所もまた、配水池計画予定池の近隣に建設中である。本プロジェクトの完成後、電力は水力発電ダムにより供給され、Godey市は24時間電気を受用出来るようになる。ジジガ市のエチオピア電力会社技術者によれば、本進行中のプロジェクトは2013年3月の時点で、完成までには少なくても1年間は必要であるとの事であった。Godey市は2014年には送電線網による受電が可能かも知れないが、それもプロジェクトの進行次第となる。現時点で不確実な電源を頼り、電気供給計画を策定する事はリスクを伴う。因って、本計画では発電機を電源として使用することとした。発電機は送電線プロジェクト完成後も、停電や事故時には非常用電源として使用可能である。電気供給計画は発電機、燃料タンク、発電機小屋から構成される。

b. 概略設計

発電機出力の計算には、以下の計算式を適用した。

\[
R = \frac{0.163 \times Q_p \times H}{\eta \times (1 + \alpha) \times 3.0}
\]

kVA = 1.2×R

但し、
\[R\] : 発電機出力 (kW)
\[Q_p\] : ポンプ取水量 (m³/min)
\[H\] : 全ポンプ揚程 (m)
\[\eta\] : ポンプ効率 (取水ポンプ0.67/送水ポンプ0.73)
\[\alpha\] : 安全率 (0.1)

(1) 取水ポンプ1台あたり

\[
R = \frac{0.163 \times 1.1 \times 15}{0.67} \times 1.1 \times 3 = 13.2 \approx 14
\]

14kW×1.2 = 16.8 = 17kVA

(2) 送水ポンプ1台あたり

\[
R = \frac{0.163 \times 1.9 \times 59}{0.73} \times 1.1 \times 3 = 82.6 \approx 83
\]

83×1.2 = 99.6kVA = 100kVA
合計出力は次式となる。

\[
120 \text{kVA} \approx 117 \text{kVA} = 17 \text{kVA} + 100 \text{kVA}
\]

給水システムはポンプ2台の運転で行われるので、電源として120kVAの発電機2台が必要となる。また予備用として発電機を1台追加し、合計3台の発電機を設置する。

発電機小屋は、パイロットプロジェクトの発電機小屋と同じ構造である。長さや幅は3台の発電機を設置しなくてはならないので、パイロットプロジェクトと比べて広くなっている（図7.6参照）。

7.5 浄水場

a. 浄水場計画

Godey市の浄水場計画策定をする上では、電力が安定していないという点を考慮しなくてはならない。既存の浄水場は浄水した水を流す際に、商用電力を使う計画となっていない。このため、既存施設は標高差を利用し、重力により水を流す仕組みとなっている。本計画でも浄水場の計画は、同様のコンセプトを採用した。現在は充分な電力が使用出来ないため、浄水場は電力使用の少ない施設とすることとした（今後の電気供給に関しては前述の電気供給の項に示した）。浄水場の計画策定では、広大な場所を使用する事が可能である。現場では丘が1箇所あり、この地点の標高が最も高い。浄水場はこ
の坂の標高差を利用して水を浄水し、重力で流す計画とした。本浄水場計画は、沈殿池、粗ろ過池、緩速ろ過池及び浄水池より構成される。

今回は水質の浄化を行い、濁度の基準値をクリアする条件を整えるために緩速ろ過池を計画している。通常、緩速ろ過池は、基本的に間欠運転が推奨されず、24 時間運転の元で計画されるべきものである。しかし現在の Godey 市の電力事情では 1 時間当たりの計画給水量全量で 24 時間運転システムを確立することは難しい。そこで本計画では、夜間 14 時間は緩速ろ過池表層の生物膜が活動を維持する事を目的として、ポンプ 1 台のみを稼働させる計画とした。現段階では浄水施設の運転は目中しか行われてはいないため、本計画での夜間の緩速ろ過池の管理は十分に行う必要がある。また、必要となる緩速ろ過池の面積は、粗ろ過池と比較して広大となる。緩速ろ過池の維持管理は手作業で行う必要がある。以上のように現段階では維持管理体制の確立が施設の運用に大きく影響するため、組織の強化を行う必要がある。それが行われないと施設の運用は困難である。

浄水場の概略レイアウトを図 7.7 に示す。

図 7.7: 浄水場の概略レイアウト

浄水場を計画した地域の地形図は既存資料を基に作成されたものであり、詳細設計の前には地形測量を行い、実際の標高を確定する必要がある。その後、計画した浄水場施設の配置をレビューし、配置計画を再検討する必要がある
b. 概略設計

b.1 着水井

取水ポンプからの水は、着水井に注水される（図 7.8参照）。同施設は 3 室から構成される。送水圧は流入室で開放される。水が流出室に流れ込む時には、流量が堰により計測される。流出室では、凝集剤やアルカリ剤溶液が注入される。着水井では 5m³ と 3m³ の薬液タンクが設置される。硫酸アルミニウムや消石灰は、各タンクで水と撹拌され、溶液として注入される。

![図 7.8: 着水井の概要]

b.2 フロック形成池

フロック形成池は、着水井で注入された凝集剤が沈殿池までにフロックを形成することを目的として設置された。原水は接続水路（長さ 5.0m × 幅 2.25m × 高さ 0.8m）を通って急速撹拌され、フロック形成池で緩速撹拌される。フロック形成池は動力を使用せず、かつ施工並びに維持管理の容易さを考慮して、水平迂流式を採用した。仕様は長さ 28.0m × 幅 1.0m × 高さ 2.5m であり、滞留時間は 26 分程である。

b.3 沈殿池

沈殿池は、スイス技術管理開発協力センターが発行している“粗ろ過による表流水処理”を用いて計画した。同書は、開発途上国の粗ろ過システムの設計指針として、国際的に使用されているものである。設計基準や沈殿池計画の採用値は、表 7.4に要約され、詳細は次節以降に記載する。

<table>
<thead>
<tr>
<th>No.</th>
<th>項目</th>
<th>公式</th>
<th>単位</th>
<th>設計基準</th>
<th>採用値</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>長さ幅比</td>
<td>L:W</td>
<td></td>
<td>3:1~8:1</td>
<td>3:1</td>
</tr>
</tbody>
</table>

7-12
b.3.1 長さ幅比

1時間当りの計画給水量は、132m³である。長さ幅比を計画するために、池高さと表面負荷率をそれぞれ1.0m、0.5m/時間と仮定した。算定された面積は264m²となり、表7.5に示すような長さ幅比が計算された。

表7.5: 長さ幅比の代替案検討

<table>
<thead>
<tr>
<th>長さ:幅</th>
<th>長さ(m)</th>
<th>幅(m)</th>
<th>滞留時間(hr)</th>
<th>採用値</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:1</td>
<td>27</td>
<td>9</td>
<td>1.84</td>
<td>○</td>
</tr>
<tr>
<td>4:1</td>
<td>32</td>
<td>8</td>
<td>1.94</td>
<td></td>
</tr>
<tr>
<td>5:1</td>
<td>35</td>
<td>7</td>
<td>1.86</td>
<td></td>
</tr>
<tr>
<td>6:1</td>
<td>42</td>
<td>7</td>
<td>2.23</td>
<td></td>
</tr>
<tr>
<td>7:1</td>
<td>42</td>
<td>6</td>
<td>1.91</td>
<td></td>
</tr>
<tr>
<td>8:1</td>
<td>48</td>
<td>6</td>
<td>2.18</td>
<td></td>
</tr>
</tbody>
</table>

長さ幅比が3:1から8:1まで変化しても、滞留時間にそれほど差異はない。この場合、長さ対幅の割合が少ないほど建設費用が安価となる。因って、長さ幅比は3:1に決定した。

b.3.2 池高

滞留時間は最大貯水容量を考慮し、3時間と仮定した。3時間の貯水容量は396m³となり、長さ幅比は3:1を適用した。最大高さは規準に従い、1.5mとした。計算結果を表7.6に示す。

表7.6: 池高さの代替案検討

<table>
<thead>
<tr>
<th>No.</th>
<th>高さ(m)</th>
<th>幅(m)</th>
<th>長さ(m)</th>
<th>面積(m²)</th>
<th>表面負荷率</th>
<th>面積/面積1</th>
<th>採用値</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>11</td>
<td>33</td>
<td>363</td>
<td>0.36</td>
<td>100%</td>
<td>○</td>
</tr>
<tr>
<td>2</td>
<td>1.1</td>
<td>11</td>
<td>33</td>
<td>363</td>
<td>0.36</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.2</td>
<td>10</td>
<td>30</td>
<td>300</td>
<td>0.44</td>
<td>83%</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.3</td>
<td>10</td>
<td>30</td>
<td>300</td>
<td>0.44</td>
<td>83%</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.4</td>
<td>10</td>
<td>30</td>
<td>300</td>
<td>0.44</td>
<td>83%</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.5</td>
<td>9</td>
<td>27</td>
<td>243</td>
<td>0.54</td>
<td>67%</td>
<td></td>
</tr>
</tbody>
</table>

全ケースで表面負荷率規準を満たしている。沈殿池面積は、池高さが深くなると減少する事は明らかである。高さ1.5mは高さ1.0mと比較して67%の面積ですむため、この値を採用した。

b.3.3 沈殿池数

追加沈殿池1池は維持管理の点から求められており、最低でも2池が必要となる。ここでは、複数の沈殿池が比較検討された。池数と性能との相関は、表7.7に要約される。
表 7.7: 沈殿池数と性能の相関

<table>
<thead>
<tr>
<th>池数</th>
<th>幅(m)</th>
<th>長さ(m)</th>
<th>高さ(m)</th>
<th>表面負荷率</th>
<th>滞留時間</th>
<th>採用値</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>21</td>
<td>1.50</td>
<td>0.45</td>
<td>3.3</td>
<td>○</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>15</td>
<td>1.50</td>
<td>0.59</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>15</td>
<td>1.50</td>
<td>0.44</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>12</td>
<td>1.50</td>
<td>0.54</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>12</td>
<td>1.50</td>
<td>0.46</td>
<td>3.3</td>
<td></td>
</tr>
</tbody>
</table>

2池以降は、大きなダウンサイジングは無く、多くの沈殿池を設けるメリットは少ない。設置数が少ない程維持管理は容易となり、規模も既存施設（長さ25m×幅4.5m×深さ2.4m×2池）と比べてもそれほど大きいものではない。表7.7から、長さ21m、幅7m、高さ1.5mの沈殿池1池が選定された。追加1池はメンテナンス時に使用するため、予備用として計画される。合計で沈殿池2池が計画された（図7.9参照）。

図7.9: 沈殿池の概要

b.4 粗ろ過池

b.4.1 ろ過タイプの選定

粗ろ過池には、垂直流式と水平流式の2種類ある。既存の粗ろ過池は水平流式である。
両方式とも寸法はほぼ同じであり、計画方式を選定するために代替案の検討を実施した。検討結果を表 7.8 に要約する。

表 7.8: 粗ろ過選定の代替案検討

<table>
<thead>
<tr>
<th>No.</th>
<th>項目</th>
<th>垂直流式</th>
<th>水平流式</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>寸法</td>
<td>6m x 5m x 1.0m</td>
<td>7m x 6m x 1.2m</td>
</tr>
<tr>
<td>2</td>
<td>適用濁度範囲</td>
<td>50-150 NTU</td>
<td>5000-1000 NTU</td>
</tr>
<tr>
<td>3</td>
<td>ろ過速度</td>
<td>0.3~1.0m/時間</td>
<td>0.3~1.5m/時間</td>
</tr>
<tr>
<td>4</td>
<td>必要ろ過面積</td>
<td>132~440m²</td>
<td>88~440m²</td>
</tr>
<tr>
<td>5</td>
<td>1池当たりのろ過面積</td>
<td>30.0m²</td>
<td>7.2m²</td>
</tr>
<tr>
<td>6</td>
<td>必要ろ過池数</td>
<td>> 5池</td>
<td>> 13池</td>
</tr>
</tbody>
</table>

両方式の差異はろ過池面積である。垂直流ろ過は垂直方向で流水を受け持つため、1池のろ過面積は 30m² = 6m x 5m となる。水平流ろ過は、幅と高さの水平方向で流水を受け持つ形になる。このため、ろ過面積は 7.2m² = 6m x 1.2m となり、垂直流ろ過と比較して大分面積が少なく、ろ過池の数は非常に多くなる。水平流ろ過は高濁度水が浄化可能であるが、14ろ過池の計画は大規模すぎてしまう。従って、垂直流ろ過池を選定した。

垂直流ろ過池は更に 3 種類に分類される。それらは、1) 連続上向流式、2) 連続下向流式、3) 層状上向流式である。各タイプのイメージを図 7.10 に図示する。

図 7.10: 垂直流ろ過池の種類

No.1 の連続上向流式は、濁度除去率が最も高い。濁度 150-500NTU の範囲で、約 90%が除去可能である。No.2 の濁度除去率も同じくほぼ 90%であるが、No.1 と比較して数パーセント低い数値である。No.3 は濁度の除去率が 70~80%程度である。この理由により、No.1 の連続上向流式をろ過方式として採用した。粗ろ過池の計画を図 7.11 に示す。
b.4.2 排水システム

垂直流粗ろ過池は排水を利用して池内の清掃を行う。“粗ろ過による表流水処理”では排水量を規定しており、その範囲は1時間当り40 mから60 mである。排水管の口径はこの規準を元に計画した。表7.9は、各ろ過池からの排水管口径と排水量の相関を示している。表から250 mm口径の管が適切な排水量となり、水流清掃が可能となる。因って、本計画では250 mm口径管を排水管として計画した。粗ろ過池排水システムの概略レイアウトを図7.12に示す。

<table>
<thead>
<tr>
<th>管口径</th>
<th>排水時間</th>
<th>排水量</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>秒</td>
<td>m/時間</td>
</tr>
<tr>
<td>100</td>
<td>608</td>
<td>6</td>
</tr>
<tr>
<td>125</td>
<td>344</td>
<td>10</td>
</tr>
<tr>
<td>150</td>
<td>217</td>
<td>17</td>
</tr>
<tr>
<td>200</td>
<td>106</td>
<td>34</td>
</tr>
<tr>
<td>250</td>
<td>61</td>
<td>59</td>
</tr>
<tr>
<td>300</td>
<td>39</td>
<td>91</td>
</tr>
</tbody>
</table>
b.5 緩速ろ過池

緩速ろ過池は、粗ろ過池で除去し切られた濁度を更に浄化する事を目的として設置する。緩速ろ過池の寸法は、アメリカ水道協会研究財団発行の”緩速ろ過設計マニュアル”では 1 池当りで最大 200m² と示されている。1 池当たりの面積は大きい方が維持管理が容易であり、かつ建設費用も安価となる。また、ろ過層の厚さは最大 1m 程である。因って、1 池の寸法は、長さ 20m × 幅 10m × 1.0m とした。緩速ろ過池のろ過速度は 0.1~0.2m/時間と規定されている。必要ろ過池面積は、660m² = 132m³/時間 ÷ 0.2m/時間となり、4 池 ≈ 3.3 = 660m² ÷ 200 m²となる。予備用として 1 池を設け総数 5 池とした（図 7.13 参照）。

図 7.13: 緩速ろ過池の概要

b.6 浄水池

浄水池は浄水を一旦貯留し、送水ポンプの安定的な運転のために水を送り出す事を目的とする。計画貯水量は、夜間給水量 924m³ (= 取水ポンプ 1 台 1.1m³/分 × 60 分 × 14 時間)とした。有効貯水量は、計画容量を満たすために 1,037m³ = 24m × 24m × 1.8m に設定した。浄水池は地上式正方形型である。清掃時にも貯水を休止しないよう 2 池とし、水流が浄水池内に滞留しないよう迂回式構造とした。塩素消毒は流出管で行う。塩素消毒用タンクは容量 250 リットルとし、貯水池の屋上に設置する。塩素剤はタンクで水と摂拌し、浄水池内に点滴する（図 7.14参照）。
7.6 送水管

a. 送水管計画

送水管は送水ポンプ場から開始し、Godey市内の標高が最も高い地点に計画する新設配水池まで敷設される。送水管ルートは、用地買収の問題が発生しないことから、既存道路沿いを第一優先として計画した。次に、ルートは可能な限り最短距離をとる事とした。第三に、ルートは工事のし易さを考え、主要道路を通す事とした。

送水管は送水ポンプ場から東側方向に伸張し、キリスト教会の北側沿いを通して通過する。通過後パイプラインは市の周辺主要道路と重なり、左側方向に曲がる。その後パイプラインは同主要道路沿いに敷設され、市の周縁地域を通過し、最終的に配水池に到達する。総延長は4,998mとなる（図7.15参照）。
送水管ルートの地形図は既存資料であり測量結果に基づくものではないため、縦断図は作成していない。詳細設計前には測量調査を行い、管路ルートの縦断状況を確定しなければならない。その後、管路上の凸部には空気弁を配置し、低地部には排水弁を配置する必要がある。

b. 概略設計

管の口径を決定するために、William-Hazen式を使用して水理勾配の計算を行った。

\[I = 10.666 \times C^{-1.85} \times D^{4.85} \times Q^{1.85} \]

但し、

C : 係数（110）
D : 管口径（0.3m）
Q : 流量（3.8m³/分 = 0.06m³/秒）

\[I = 10.666 \times 110^{-1.85} \times 0.3^{4.85} \times 0.06^{1.85} = 0.0034 \approx 0.34\% \]

\[H = 0.34\% \times 1000 = 3.4m \]

管口径が300mmの場合は、摩擦損失は1000m当りで3.4mとなる。これは、管路区間で全損失水頭が17mとなる事を意味する。もし250mm口径の管を計画すれば、全損失水頭は41mとなる。2倍以上の高さを揚水することとなり、非常に大きな電力供給が必要となる。そのような大規模の電力を発電機で賄うのは、費用や維持管理の面から考えて妥当ではない。因って、管口径を300mmに拡大し、摩擦損失を約半分のレベルに減少させる事とし、電力供給量は妥当な範囲まで低下出来た。

7.7 配水池

a. 配水池計画

2020年の配水池の容量は、800m³と算定された（7.7b節参照）。既存配水池は、容量1,000m³、
150m³、60m³の3箇所である。2箇所の既存配水池は高架式であり、水位は地上式1,000m³の配水池よりも高い。全施設は同じ場所にあり、水位の異なる配水池を運転する事は困難が伴う。そこで、2箇所の高架式水槽は予備用目的とし、新規配水池は標高の高い地域の給水計画を満たすために半分の容量400m³を有するものとする。

Godey市はほぼ平らな地域である。既存の配水池は市内の丘の上に建設されているが、配水池と給水接続点との標高差はあまりない。故に既存の2箇所の配水池は、各給水地点で高い水圧を確保するために高架型となっている。新規の400m³の配水池はこの機能を引き受け、標高の高い地区への給水を行う。既存の1,000m³の配水池は標高の低い地区への給水を行う。

新規配水池は市内の最も標高の高い地点に計画するのではあるが、周辺地域と明確な標高差は無い。そこで、周辺地域への配水圧を増加させるためには、対策が必要となる。一つは、配水池を高架式として計画する事である。もう一つの方法は、配水池の流出口にポンプを設置することである。現時点では、現地まで商用電線は敷設されていない。加えて、圧送による給水は、運転費用が増加する。高架式は建設費用がより必要となるが、運転費用は少なくて済み、運転はポンプ給水よりも容易である。従って、新設配水池は高架式を計画する（図7.16参照）。

![図 7.16: 高架水槽の概要](image)

b. 概略設計

配水池容量の計算は、給水計画マスタープランと同様の下記の公式を適用した。

\[
V = 0.5 \times Qd \times (1+10\%)
\]

但し、

Qd：2020年の平均一日給水量(1,418m³/日)

10%：消防用水需要量

\[
V = 0.5 \times 1,418 \times (1+10\%) = 780m³ \approx 800m³
\]

新規高架水槽の貯水量と高さは夫々400m³、10mと計画された。この容量は通常よりも大容量となるため、建設時の容易さを考慮して矩形形式とした。

7-20
7.8 配水管システム

a. 配水管計画

既存の配水管網は老朽化しており、十分に機能をとらていない。配水管計画は既存の配水管網を更新し、かつ配水地域を拡張する計画とする。特に、市内の西側区域は配水管システムが無い。給水計画はこの区域に配水管を敷設するものとする。加えて、JICA 調査により建設された 5 箇所の公共水栓は、Godey 市の周辺部に位置している。それらの近隣にはパイプラインが敷設されていない。新規配水管は各公共水栓まえ延長し、それらと接続する計画とする。各公共水栓は配水管に接続された後、常時通水する事になる。

Godey 市の地形は一般に、南側から北側に向かって標高が上がっている。新規配水池の水は 2 方向に配水される。一つは既存の配水池に対して送水することであり、他の一つは市内の標高の高い地区に対しても配水することである。給水範囲の境界を標高 293m で設定した。既存の配水池に貯水された水は、標高 293m 以下の区域に対して給水される。配水管にはバルブが設置され、配水区域が分割されることになる。各配水区域は独立した区域となり、水圧は確保する事が出来る。配水管レイアウトと各配水池での給水区域を図 7.17 に示す。

図 7.17: 各水池の給水区域

配水管路システムは主に市中心部に敷設されている。JICA で建設した給水地点 No.4
のように新たに開発されている居住地への配水管路は、限定された地区だけである。もし将来都市地域が拡張すれば、配水管も容易に北側方向に拡張出来る。配水管の水圧に関しては、提案した高架水槽は最も標高の高い地点に位置しており、その地点で 10m の水頭圧を確保することになる。配水池の北側は将来居住地として計画されており、その標高は配水池と同等である。配水池は 10m の高さを有している為から、各地区まで重力で流すことができる。他の新規居住地は配水池よりも標高は低く、水は重力で流す事が出来る（図 7.18参照）。

図 7.18: Godey 市給水配水管計画図
b．概略設計

配水管には uPVC 管を適用した。各配水管ルートは、不必要な私有地の用地買収を避けるために、既存の道路沿いとしている。全パイプライン延長は 39.3km であり、各口径の延長は表 7.10 に要約される。

7.9 給水地点

a．公共水栓

5.2.1 節で記載したように、公共水栓の計画使用者数は、18,497 人である。公共水栓 1 篇所は 900 人に対して給水するため、21 篇所の公共水栓 ~20.6 = 18,497 人 ÷ 900 人が計画された。公共水栓の設計はパイロットプロジェクトを修正した仕様とし、給水タンクは設置しない。それらの水が配水管を通じて各公共水栓に 24 時間給水が出来るようになることによる。概略設計は図 7.19 に示される。

![図 7.19: 公共水栓の概要](image)

b．家畜用水飲み場

家畜用水需水量は、各用途水需水量の 20%相当分となっている。家畜用水飲み場の数量は、公共水栓数の約 20%であり、5 篇所 ~ 4.2 = 21 篇所×20%が計画された。家畜用水飲み場の計画は、パイロットプロジェクトで修正して建設されたものを適用する。家畜用水飲み場は公共水栓と同じ場所に設置する(図 7.20 参照)。
図 7.20: 家畜用水飲み場の概要

Godey 市給水システム計画の内容は、表 7.10に要約される。

表 7.10: Godey 市給水システムの設計概要

<table>
<thead>
<tr>
<th>No.</th>
<th>項目</th>
<th>仕様</th>
<th>営業単位</th>
<th>数量</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>取水路</td>
<td>L=20m, W=2m, H=0.5m</td>
<td>箇所</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>取水ポンプ</td>
<td>Q=1.1m³/min, H=15 m</td>
<td>箇所</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>沈殿池</td>
<td>L=21m, W=7m, H=1.5m</td>
<td>箇所</td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td>粗ろ過池</td>
<td>L=6m, W=5m, H=1m</td>
<td>箇所</td>
<td>6</td>
</tr>
<tr>
<td>5.</td>
<td>練習ろ過池</td>
<td>L=20m, W=10m, H=1m</td>
<td>箇所</td>
<td>5</td>
</tr>
<tr>
<td>6.</td>
<td>清水池</td>
<td>V=1,000 m³</td>
<td>箇所</td>
<td>1</td>
</tr>
<tr>
<td>7.</td>
<td>送水ポンプ</td>
<td>Q=1.9m³/min, H=59 m</td>
<td>台</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>発電機</td>
<td>120 kVA</td>
<td>台</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>送水管</td>
<td>300 mm</td>
<td>m</td>
<td>4,998</td>
</tr>
<tr>
<td>10.</td>
<td>高架水槽</td>
<td>H=10m, V=400m³</td>
<td>箇所</td>
<td>1</td>
</tr>
<tr>
<td>11.</td>
<td>配水システム</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td>配水管</td>
<td>63mm</td>
<td>m</td>
<td>23,751</td>
</tr>
<tr>
<td>11.2</td>
<td>90mm</td>
<td>m</td>
<td></td>
<td>7,218</td>
</tr>
<tr>
<td>11.3</td>
<td>110mm</td>
<td>m</td>
<td></td>
<td>4,187</td>
</tr>
<tr>
<td>11.4</td>
<td>160mm</td>
<td>m</td>
<td></td>
<td>1,884</td>
</tr>
<tr>
<td>11.5</td>
<td>200mm</td>
<td>m</td>
<td></td>
<td>1,384</td>
</tr>
<tr>
<td>11.6</td>
<td>300mm</td>
<td>m</td>
<td></td>
<td>2,797</td>
</tr>
<tr>
<td>11.7</td>
<td>公共水栓</td>
<td>箇所</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>11.8</td>
<td>家畜用水飲み場</td>
<td>箇所</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>
8. 積算
8 積算

8.1 建設経費

8.1.1 建設経費の積算方法

a. 建設経費の項目

建設経費および必要経費は以下の図8.1の項目によって構成される。

建設経費は給水施設建設に必要となる建設工事費（直接工事費+間接工事費等）が該当する。

b. 積算方法

建設経費である建設工事費は直接工事費と間接工事費等に大別される。

直接工事費は工事目的物を作るために直接必要とされる費用である。本工事費は、設計に基づく各種工事種目の数量に工事単価を乗じて、各種工事種目の工事費を積み上げることにより算定する。各種工事種目の工事単価は本プロジェクトのパイロットプロジェクト給水工事や見積もり徴収等により設定した。管工事は、管種によって工事単価が大きく異なる。取水、浄水、送水施設の躯体構造部に使用される管材および送・配水施設における管径D200以上の管材は、重要な水道施設と位置づけ、強い強度や優れた耐久性を有するダクトタイル鋳鉄管やステンレス鋼管を採用するとした。これら重要な水道施設以外で使用される管材については、エチオピアで生産されている硬質塩化ビニル管や亜鉛メッキ管とする。

間接工事費等は、共通仮設費、現場管理費、一般管理費に大別され、工事の目的物の出来高には直接関係ないが、工事作業において共通に使用されるものに要する費用である。間接工事費等の算定は、日本の積算基準書である「水道事業実務実務基準」に準拠して直接工事費を基に、以下に示す計算式により算定する。
間接工事費等＝共通仮設費（C）＋現場管理費（F）＋一般管理費（G）

共通仮設費（C）＝直接工事費（D）×共通仮設費率

共通仮設費率（％）=485.4×D^(-0.2231) + 1.0

現場管理費（F）＝（D+C）×現場管理費率

現場管理費率（％）=103.1×（D+C）^(-0.0977) + 0.5

一般管理費（G）＝（D+C+F）×一般管理費率

一般管理費（％）=-2.57651×Log（D+C+F）+0.316351

c. 建設経費の積算条件

以下、建設経費の積算条件を示す。なお、必要経費の積算条件も同様である。

- 概算事業費に付加価値税（Value Added Tax: VAT）および土地取得費用は含めない。
- 概算事業費は、現地通貨分および外貨分に区分する。
- 積算時点は2013年5月とする。
- 積算時点からGodey市給水計画の設計開始および建設工事入札までの物価変動分（内貨と外貨）を、年次事業費算定の際に考慮する。
- 為替レートはUS$1=18.53Birr（ブル）とする（2012年11月から2013年4月までの6ヵ月の為替レート平均）。
- 建設工事および設計・施工監理はエチオピア国内の業者によって実施されるものとする。

8.1.2 建設経費

a. 実施工程

給水施設の建設工事実施は、設計（設計、入札図書作成、入札、施工業者契約）と施工（建設工事の実施、試運転、完工、施工監理）に大別される。

設計には16ヵ月を要すると考えられる。建設は、建設工事の施工体制の編成によって工期が異なる。本計画では、取水・浄水・送水施設の作業班を1班、配水施設（送水管含む）の作業班を2班、公共水栓・家畜用水飲み場作業班を1班とし、合計4班体制で実施すると設定する。この作業体制班の場合、施工（建設工事の実施）には、24ヵ月を要すると考える。

建設工事の実施にあたっては、建設に必要となる資機材の調達が施工工事を決定するクリティカルとなる。特に、エチオピア国内では生産しておらず、流通も多くない管材（ダクタイル鍛鉄管やステンレス鋼管）、水中・陸上モーターポンプ、発電機等の調達
はエチオピアの国外からの調達となり、調達には時間を要すると考える。特に、送・配水管布設工事では、管布設総延長が約46km以上となり、管材の調達に管材のエチオピア国内外生産に関わらず時間を要する。また、そのうち重要な施設と位置付ける基幹送配管の総延長は約8kmで、管種はエチオピア国で生産していないダクタイル鋳鉄管等となり、こちらもエチオピアの国外からの調達となる。これらの資機材の調達を考慮して、建設工事の施工工程を設定する。
次表に実施工程を示す。

表 8.1: Godey 市給水計画の実施工程

<table>
<thead>
<tr>
<th>項 目</th>
<th>月 数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42</td>
</tr>
<tr>
<td>1. 設計・施工監理</td>
<td></td>
</tr>
<tr>
<td>1.1 設計</td>
<td></td>
</tr>
<tr>
<td>a. 設計方針検討</td>
<td></td>
</tr>
<tr>
<td>b. 測量</td>
<td></td>
</tr>
<tr>
<td>c. 浄水施設詳細設計</td>
<td></td>
</tr>
<tr>
<td>d. 施設詳細設計</td>
<td></td>
</tr>
<tr>
<td>1.2 入札図書作成</td>
<td></td>
</tr>
<tr>
<td>1.3 入札</td>
<td></td>
</tr>
<tr>
<td>1.4 業者契約</td>
<td></td>
</tr>
<tr>
<td>1.5 施工管理</td>
<td></td>
</tr>
<tr>
<td>2. 建設工事</td>
<td></td>
</tr>
<tr>
<td>2.1 準備・仮設工</td>
<td></td>
</tr>
<tr>
<td>2.2 取水・浄水・送水施設</td>
<td></td>
</tr>
<tr>
<td>a. 測量</td>
<td></td>
</tr>
<tr>
<td>b. 取水施設工事</td>
<td></td>
</tr>
<tr>
<td>c. 浄水施設工事</td>
<td></td>
</tr>
<tr>
<td>d. 送水施設工事</td>
<td></td>
</tr>
<tr>
<td>e. ポンプ・発電機調達</td>
<td></td>
</tr>
<tr>
<td>f. ポンプ・発電機据付</td>
<td></td>
</tr>
<tr>
<td>g. 管材「エ」国内調達</td>
<td></td>
</tr>
<tr>
<td>h. 管材「エ」国外調達</td>
<td></td>
</tr>
<tr>
<td>2.3 配水施設（送水管含む）</td>
<td></td>
</tr>
<tr>
<td>a. 測量</td>
<td></td>
</tr>
<tr>
<td>b. 配水施設躯体工事</td>
<td></td>
</tr>
<tr>
<td>c. 管材「エ」国内調達</td>
<td></td>
</tr>
<tr>
<td>d. 管材「エ」国外調達</td>
<td></td>
</tr>
<tr>
<td>e. 管材布設「エ」国内調達</td>
<td></td>
</tr>
<tr>
<td>f. 管材布設「エ」国外調達</td>
<td></td>
</tr>
<tr>
<td>2.4 公共水栓・家畜用飲み場</td>
<td></td>
</tr>
<tr>
<td>a. 測量</td>
<td></td>
</tr>
<tr>
<td>b. 公共水栓工事</td>
<td></td>
</tr>
<tr>
<td>c. 家畜水飲み場工事</td>
<td></td>
</tr>
<tr>
<td>d. 管材「エ」国内調達</td>
<td></td>
</tr>
<tr>
<td>2.5 試運転・検査</td>
<td></td>
</tr>
<tr>
<td>2.6 完工</td>
<td></td>
</tr>
</tbody>
</table>
b. 建設経費と各年次の建設経費

建設経費を表 8.2 に示す。

表 8.2: Godey 市給水計画の建設経費

<table>
<thead>
<tr>
<th>項目</th>
<th>事業費</th>
<th>外貨率</th>
<th>外貨分</th>
<th>現地通貨分</th>
</tr>
</thead>
<tbody>
<tr>
<td>直接経費（建設工事費）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 直接工事費</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) 護床保護</td>
<td>5,500</td>
<td>40%</td>
<td>2,200</td>
<td>3,300</td>
</tr>
<tr>
<td>(2) 取水路</td>
<td>37,500</td>
<td>40%</td>
<td>15,000</td>
<td>22,500</td>
</tr>
<tr>
<td>(3) 沈砂池</td>
<td>26,300</td>
<td>40%</td>
<td>10,520</td>
<td>15,780</td>
</tr>
<tr>
<td>(4) 取水・送水ポンプ室</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) ポンプ室（躯体）</td>
<td>37,700</td>
<td>40%</td>
<td>15,080</td>
<td>22,620</td>
</tr>
<tr>
<td>2) ポンプ・配管・設備</td>
<td>245,900</td>
<td>97%</td>
<td>238,523</td>
<td>7,377</td>
</tr>
<tr>
<td>(5) 発電機室</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) 発電機室（躯体）</td>
<td>29,200</td>
<td>40%</td>
<td>11,680</td>
<td>17,520</td>
</tr>
<tr>
<td>2) 発電機・機械設備</td>
<td>72,800</td>
<td>97%</td>
<td>70,616</td>
<td>2,184</td>
</tr>
<tr>
<td>(6) 沈殿池</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) 土木構造物</td>
<td>135,300</td>
<td>40%</td>
<td>54,120</td>
<td>81,180</td>
</tr>
<tr>
<td>2) 配管設備</td>
<td>62,500</td>
<td>97%</td>
<td>60,625</td>
<td>1,875</td>
</tr>
<tr>
<td>(7) 粗速漉過池</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) 土木構造物</td>
<td>166,200</td>
<td>40%</td>
<td>66,480</td>
<td>99,720</td>
</tr>
<tr>
<td>2) 配管設備</td>
<td>157,400</td>
<td>97%</td>
<td>152,678</td>
<td>4,722</td>
</tr>
<tr>
<td>(8) 緩速漉過池</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) 土木構造物</td>
<td>320,100</td>
<td>40%</td>
<td>128,040</td>
<td>192,060</td>
</tr>
<tr>
<td>2) 配管設備</td>
<td>119,000</td>
<td>97%</td>
<td>115,430</td>
<td>3,570</td>
</tr>
<tr>
<td>(9) 浄水池</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) 土木構造物</td>
<td>132,000</td>
<td>40%</td>
<td>52,800</td>
<td>79,200</td>
</tr>
<tr>
<td>2) 配管設備</td>
<td>47,000</td>
<td>97%</td>
<td>45,590</td>
<td>1,410</td>
</tr>
<tr>
<td>(10) 送水管</td>
<td>1,429,600</td>
<td>70%</td>
<td>1,000,720</td>
<td>428,880</td>
</tr>
<tr>
<td>(11) 高架水槽</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) 土木構造物</td>
<td>229,500</td>
<td>40%</td>
<td>91,800</td>
<td>137,700</td>
</tr>
<tr>
<td>2) 配管設備</td>
<td>32,200</td>
<td>70%</td>
<td>22,540</td>
<td>9,660</td>
</tr>
<tr>
<td>(12) 配水管</td>
<td>1,660,700</td>
<td>70%</td>
<td>1,162,490</td>
<td>498,210</td>
</tr>
<tr>
<td>(13) 公共水栓</td>
<td>56,700</td>
<td>70%</td>
<td>22,680</td>
<td>34,020</td>
</tr>
<tr>
<td>(14) 家畜用水飲み場</td>
<td>13,500</td>
<td>40%</td>
<td>5,400</td>
<td>8,100</td>
</tr>
<tr>
<td>(15) その他</td>
<td>251,400</td>
<td>70%</td>
<td>175,980</td>
<td>75,420</td>
</tr>
<tr>
<td>計</td>
<td>5,268,000</td>
<td>67%</td>
<td>3,520,992</td>
<td>1,747,008</td>
</tr>
<tr>
<td>平均外貨率</td>
<td></td>
<td></td>
<td>67%</td>
<td>33%</td>
</tr>
<tr>
<td>1.2 間接工事費</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>建設工事費計</td>
<td>7,043,000</td>
<td>67%</td>
<td>4,710,000</td>
<td>2,333,000</td>
</tr>
</tbody>
</table>
2015年に設計、2016年に札後、建設工事を実施し、2018年に完工する実施期間42ヵ月の計画とする。建設工事費は3ヵ年で按分するとし、各年次の建設経費は表8.3のとおりである。

表8.3: Godey市給水計画の各年次の事業費

<table>
<thead>
<tr>
<th>西暦（年）</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>建設経費（建設工事費）</td>
<td>2,348,000</td>
<td>2,348,000</td>
<td>2,347,000</td>
<td>7,043,000</td>
</tr>
</tbody>
</table>

c. 物価変動率と物価変動を見込んだ各年次の建設経費

c.1 物価変動率

物価変動率は、エチオピア国（内貨）の物価と外貨の物価に区分して算定する。
内貨の物価の変動率は、エチオピア国立統計局（Central Statistical Agency: CSA）が公表する消費者物価指数により算定する。内貨の物価の変動率は、2012年1月から同年3月までの物価変動率を内貨の物価の変動率とし、年あたり11.3%と設定する。
外貨の物価の変動率は、国際通貨基金（International Monetary Fund: IMF）が公表する先進国の消費者物価指数により算定する。2013年の予測値は1.6%（年間）、2014年の予測値は2.0%（年間）と予測されており、この平均値をとり1.8%（年間）と設定する。内貨および外貨の物価変動率の算定の詳細は、資料編に添付する。

c.2 物価変動を見込んだ各年次の建設経費

設計・施工監理費の物価変動分は、積算基準の2013年5月から設計開始予定月まで、建設工事費の物価変動分は積算基準から建設工事の入札予定月までを計上する（表8.4）。

表8.4: 物価変動を見込む月数

<table>
<thead>
<tr>
<th>積算基準</th>
<th>設計開始予定月</th>
<th>入札予定月</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013年5月</td>
<td>2015年1月</td>
<td>2016年3月</td>
</tr>
<tr>
<td>月数</td>
<td>20ヵ月</td>
<td>34ヵ月</td>
</tr>
</tbody>
</table>

物価変動を見込んだ各年次の建設経費は表8.5のとおりである。

表8.5: 物価変動を見込んだ各年次の建設経費

<table>
<thead>
<tr>
<th>西暦（年）</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>物価変動含む事業費</th>
<th>基準事業費</th>
</tr>
</thead>
<tbody>
<tr>
<td>建設経費（建設工事費）</td>
<td>2,680,000</td>
<td>2,680,000</td>
<td>2,669,000</td>
<td>8,029,000</td>
<td>7,043,000</td>
</tr>
<tr>
<td>内外貨分</td>
<td>1,650,000</td>
<td>1,650,000</td>
<td>1,650,000</td>
<td>4,950,000</td>
<td>4,710,000</td>
</tr>
<tr>
<td>エチオピア国内貨分</td>
<td>1,030,000</td>
<td>1,030,000</td>
<td>1,019,000</td>
<td>3,079,000</td>
<td>2,333,000</td>
</tr>
</tbody>
</table>
8.2 必要経費

8.2.1 必要経費の積算方法

必要経費として、設計・施工監理費および事務費・その他経費がある。設計・施工監理費は、一律に建設経費（建設工事費）の15%と設定して算定する。事務費・その他経費は、設計や建設工事の発注や事業実施に関する関係者との協議、その他予備経費として、事務費・その他経費を、一律に建設経費（直接工事費）の10%と設定して算定する。

8.2.2 必要経費と各年次の必要経費

必要経費を表8.6に示す。

表8.6: Godey市給水計画の必要経費

<table>
<thead>
<tr>
<th>項目</th>
<th>必要経費</th>
<th>外貨率</th>
<th>外貨分</th>
<th>現地通貨分</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.設計・施工監理費（建設工事費の15%、下3ケタ切り上げ）</td>
<td>1,057,000</td>
<td>67%</td>
<td>708,000</td>
<td>349,000</td>
</tr>
<tr>
<td>2.事務費・その他経費（建設工事費の10%、下3ケタ切り上げ）</td>
<td>705,000</td>
<td>67%</td>
<td>472,000</td>
<td>233,000</td>
</tr>
<tr>
<td>必要経費 計</td>
<td>1,762,000</td>
<td>1,180,000</td>
<td>582,000</td>
<td></td>
</tr>
</tbody>
</table>

2015年に設計、2016年に入札後、建設工事を実施し、2018年に完工する実施期間42ヵ月の計画とする。設計・施工監理費と事務費・その他経費は4ヶ年で按分する。各年次の必要経費は表8.7のとおりである。

表8.7: Godey市給水計画の各年次の必要経費

<table>
<thead>
<tr>
<th>西暦(年)</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>必要経費</td>
<td>264,000</td>
<td>264,000</td>
<td>264,000</td>
<td>265,000</td>
<td>1,057,000</td>
</tr>
<tr>
<td>1.設計・施工監理費</td>
<td>264,000</td>
<td>264,000</td>
<td>264,000</td>
<td>265,000</td>
<td>1,057,000</td>
</tr>
<tr>
<td>2.事務費・その他経費</td>
<td>176,000</td>
<td>176,000</td>
<td>176,000</td>
<td>177,000</td>
<td>705,000</td>
</tr>
<tr>
<td>必要経費 計</td>
<td>440,000</td>
<td>440,000</td>
<td>440,000</td>
<td>442,000</td>
<td>1,762,000</td>
</tr>
</tbody>
</table>

また、物価変動を見込んだ各年次の必要経費は表8.8のとおりである。

表8.8: 物価変動を見込んだ各年次の必要経費

<table>
<thead>
<tr>
<th>西暦(年)</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>必要経費</td>
<td>282,000</td>
<td>282,000</td>
<td>282,000</td>
<td>297,000</td>
<td>1,143,000</td>
</tr>
<tr>
<td>1.設計・施工監理費</td>
<td>282,000</td>
<td>282,000</td>
<td>282,000</td>
<td>297,000</td>
<td>1,143,000</td>
</tr>
<tr>
<td>2.事務費・その他経費</td>
<td>192,000</td>
<td>120,000</td>
<td>120,000</td>
<td>120,000</td>
<td>192,000</td>
</tr>
<tr>
<td>必要経費</td>
<td>474,000</td>
<td>474,000</td>
<td>474,000</td>
<td>483,000</td>
<td>1,905,000</td>
</tr>
</tbody>
</table>
以上、建設経費と必要経費を合わせた各年度の概算事業費（物価変動を含んだ）を以下の表8.9に示す。

表8.9: Godey市給水計画の物価変動を含んだ各年度の事業費

<table>
<thead>
<tr>
<th>表示（年）</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>物価変動含む事業費</th>
<th>基準事業費</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.建設工事費</td>
<td>2,680,000</td>
<td>2,680,000</td>
<td>2,669,000</td>
<td>8,029,000</td>
<td>7,043,000</td>
<td></td>
</tr>
<tr>
<td>内</td>
<td>外貨分</td>
<td>1,650,000</td>
<td>1,650,000</td>
<td>1,650,000</td>
<td>4,950,000</td>
<td>4,710,000</td>
</tr>
<tr>
<td>訳</td>
<td>エチオピア国内貨分</td>
<td>1,030,000</td>
<td>1,030,000</td>
<td>1,019,000</td>
<td>3,079,000</td>
<td>2,333,000</td>
</tr>
<tr>
<td>2.設計・施工監理費</td>
<td>282,000</td>
<td>282,000</td>
<td>282,000</td>
<td>297,000</td>
<td>1,143,000</td>
<td>1,057,000</td>
</tr>
<tr>
<td>内</td>
<td>外貨分</td>
<td>182,000</td>
<td>182,000</td>
<td>182,000</td>
<td>183,000</td>
<td>729,000</td>
</tr>
<tr>
<td>訳</td>
<td>エチオピア国内貨分</td>
<td>100,000</td>
<td>100,000</td>
<td>100,000</td>
<td>114,000</td>
<td>414,000</td>
</tr>
<tr>
<td>3.事務費・その他経費</td>
<td>192,000</td>
<td>192,000</td>
<td>192,000</td>
<td>186,000</td>
<td>762,000</td>
<td>705,000</td>
</tr>
<tr>
<td>内</td>
<td>外貨分</td>
<td>122,000</td>
<td>122,000</td>
<td>122,000</td>
<td>120,000</td>
<td>486,000</td>
</tr>
<tr>
<td>訳</td>
<td>エチオピア国内貨分</td>
<td>70,000</td>
<td>70,000</td>
<td>70,000</td>
<td>66,000</td>
<td>276,000</td>
</tr>
<tr>
<td>事業費計</td>
<td>474,000</td>
<td>3,154,000</td>
<td>3,154,000</td>
<td>3,152,000</td>
<td>9,934,000</td>
<td>8,805,000</td>
</tr>
</tbody>
</table>

8.3 運営管理経費

8.3.1 提案された施設に必要な維持管理作業と概算費用

a. 計画策定・費用見積もり条件

Godey市市のマスタープランで提案された施設の運営・維持管理計画の策定は、他の市や郡と同様に以下の点を考慮して実施した。

- 提案された施設の規模・仕様・利用される技術に対応した具体的な維持管理作業を提案した。

- 適切な維持管理の実施のためには現状のスタッフ組織の改善が前提となる。そのため、特にオペレーターの各業務にはグループを統括するリーダーをもうけ、リーダーには十分な研修を実施するが、リーダー職は外部から有資格者を新規雇用する他、雇用条件も改善する。

- 運営維持管理に必要な資機材の調達には州水資源局による計画的な資機材の購入および配布が必要になる。特に全ての郡において水消毒用の塩素剤の利用が必要になることから、州水資源局は大量の塩素消毒剤のアジスアベバでの購入と拠点の郡までの運搬を担当することを前提とする。

運営・維持管理にかかる費用については以下の条件で算定した。

- 施設の運営・維持管理の費用は新規に計画された施設および既存の施設をあわせて算定する。

- 通常WASHCOにより管理される末端の公共水栓や各戸給水栓の維持管理費用は含めていない。

- 調査で調べた現状の維持管理状況を考慮し、現状に合わせた各作業の必要人数等を算出する。
年間の運営・維持管理費は通常の運用を10年間継続する場合の1年の平均値として算出する（数年に一度の出費は各年に振り分ける）。

機材の取替えが必要な場合は、維持管理費とは別に別途年毎にその費用を計上する。

突発的な事故や故障対応の費用は考慮しない。

b. 運営・維持管理計画の対象と費用の内訳

運営・維持管理の対象となるGodey市の給水システムの施設概要と必要となる作業内容および人材投入の考え方を簡単に表形式にまとめた（表8.11及び表8.12参照）。また、各施設での作業内容・頻度・必要人員について更に詳しく表形式でまとめた（表8.13及び表8.14参照）。この結果に従い、以下の項目について運営・維持管理の費用を算出した。

1) 人件費（施設の運転・維持管理に直接関わる主に常駐フィールドスタッフと現場作業員の給与）
2) 資材料費（運営・維持管理に必要な道具等の購入費）
3) 燃料・電気代（発電機の燃料、ポンプの電気代）
4) 薬品代（家庭レベルで利用する水の消毒薬、および浄水場の水処理剤の購入費）
5) スペアパーツ代（ポンプ・発電機の維持管理のための消耗品とパーツ購入費）

算出にあたっては現在可能な限り具体的なデータを利用したが、費用に大きく影響する薬品の実際の使用量は詳細設計後に他の技術研修の中で現場に合わせて再度最適量を決定し、修正する必要がある。また、その他の項目についても詳細設計の段階で見直す必要があります。算出の詳細はデータブックに掲載した。

c. Godey市給水システムの運営・維持管理計画と費用
c.1 必要作業と人員計画

現場で給水システムの維持管理にあたるオペレーターに関しては、担当施設毎にオペレーターのリーダーとしてテクニシャンの役職を新たに設ける。テクニシャンにはTVETC卒業以上で実務経験のある人材を登用し、施設建設着工段階から必要な研修を行う。維持管理作業に関しては、既存施設では実施していなかった凝集剤・pH調整剤の投入の作業が追加になり、毎日の簡易実験に基づいた適正量の計算と投入量の調整が必要になる。テクニシャンの主要業務の一つはこの作業の指導であり、凝集剤については一度に多量の薬品を扱うため、作業補助のためのオペレーターのアシスタントを設ける。また、毎日の水質検査を行う実験担当者を設ける。

2020年より運営する給水システムを構成する各施設での必要作業と頻度、また人員の詳細は表8.13及び表8.14に示す。また、この計画に基づきGodey市の計画給水システムの運転に携わるスタッフの総数は以下のとおりとなる（表8.10参照）。参考のため既存施設のスタッフ数も括弧内に併記した。
表 8.10: Godey 市の計画給水システム運転・管理に関わるスタッフ総数

<table>
<thead>
<tr>
<th>施設群</th>
<th>常駐フィールドスタッフ</th>
<th>非常駐スタッフ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>テクニシャン</td>
<td>オペレーター</td>
</tr>
<tr>
<td>浄水池（施設 7）</td>
<td>2 [2]</td>
<td>2 [0]</td>
</tr>
<tr>
<td>配水池（施設 8,9）</td>
<td>3 [0]</td>
<td>0 [0]</td>
</tr>
<tr>
<td>予備配水池（施設 10）</td>
<td>0 [0]</td>
<td>0 [0]</td>
</tr>
<tr>
<td>送・配水管システム（施設 11）</td>
<td>0 [0]</td>
<td>0 [0]</td>
</tr>
<tr>
<td>総計</td>
<td>50 [15]</td>
<td></td>
</tr>
</tbody>
</table>

注) 見出し施設郡の括弧内は、表 8.13 及び表 8.14 の施設番号である。
網掛けはサイトに非常駐の給水事務所スタッフで、維持管理費用の計算対象には含まれない。
スタッフ数はシフトによる勤務を前提に必要となる総人数を記した。括弧内は現状の数値。

計画施設の建設後に運転する施設の処理・配水プロセスは既存施設に順ずるが、現在は適切に実施されておらず、またその規模が大きくなる。本計画では適切な水処理薬品の投入、スラッジ除去およびろ過層の管理等の作業に対応するために、主にオペレーターとテクニシャンを増員する他、複雑かつ重労働になる薬品投入の作業において彼らを補佐するためのアシスタント・オペレーターを専属で担当するラボテクニシャンを投入した。一方で施設の効率稼動により必要な作業員の数は微増にとどまっている。非常駐スタッフの給水事務所の技術職員は主に管路のメンテナンスで配管工と技術者が年間 68 人日程度維持管理作業にかかわる。

c.2 概算費用

Godey 市では、給水計画の章で説明したとおり、ほぼ全ての施設が更新される。維持管理の費用は継続利用される既存の施設も考慮して算出した。既存の施設については 2020 年まで適正に運営・維持管理があわれ、マスタープラン目標年の 2020 年時点で機材は全て更新し、施設全体が稼働中であると仮定した。人件費については常駐フィールドスタッフと現場作業員のみを対象として、非常勤の給水事務所職員（上表の網掛け部分）は含めていない。

算出した運営・維持管理費の内訳は表 8.15 に示す。概算算出した年間の維持管理費は約 3,929,000 Birr であり、US ドル換算で約 US$ 212,000 である。総費用の 60％近くを燃料代が占めており、次に薬剤費と人件費が 20％程度で大きい。また、表 8.16 に物価上昇率 (11.3％) を考慮した 2020 年時点から 10 年間の運営維持管理費と施設更新費を含めた出費予想を示す。物価上昇は 2020 年まで考慮し、その後は一定であると仮定した。
表 8.11: Godey市 給水の施設維持管理方針(1)

| 1. 基本諸条件 | ・給水量: 2,212m³/日（漏水30％分を含む、最大値）
| | ・ポンプ運転: 24時間/日
| | ・施設・機材:
| | - 取水ポンプ2台（120kVA発電機2台で運転）
| | - 送水ポンプ2台（120kVA発電機2台で運転）
| | - 沈殿池、荒ろ過池、緩速ろ過池、浄水槽、高架水槽

| 2. オペレーター等の必要人員 | ・現在の施設に配置されている人員とその稼動状況を基本データとし、計画された施設の規模と作業内容に合わせて増員する。
| | ・また、オペレーターであっても理論的な知識をもったリーダー格の人材が必要との観点から、各施設の運転にTVETCレベルの人材を一人登用した。
| | ・毎日の薬剤の投入量の調整のための試験を行う水質試験担当者（ラボテクニシャン）を常勤させる。
| | ・過剰超過勤務とならないよう、現状の勤務時間を短縮するため10時間程度の勤務が可能なシフト制とした。
| | ・貯水タンク清掃などのメンテナンスを行っても給水が中断されないよう人員配置とした。

| 3. 発電機燃料・電力 | ・現用の発電機の燃費は約5~6L/時、パイロットプロジェクトで新規導入した発電機の燃費が5~6L/時であることから、発電機のディーゼル燃料消費は5L/時に設定した。その他の容量の発電機はメーカーのカタログ値（70%負荷時）を採用した。
| | ・取水ポンプの1台は連続10時間運転。2台目は24時間運転。
| | 3. 発電機燃料・電力

| 4. 水処理用薬剤 | ・Godey市では凝集剤とpH調整剤、および消毒用の塩素剤を使用する。
| | ・塩素剤は長期保管での劣化が少なく、取り扱いが便利・安全な次亜塩素酸カルシウムの粉末を利用する。塩素剤（次亜塩素酸カルシウム）はアソスアベバで調達可能。塩素剤（次亜塩素酸カルシウム）はGodey市内で調達可能。
| | ・凝集剤は国内で製造され、調達の容易な硫酸アルミニウム粉末を利用する。投入量は残留塩素濃度を確認することで調節するが、3mg/Lを想定する。
| | ・pH調整のためにLime（水酸化カルシウム）を投入する。投入量は40mg/Lを仮定した。

| 5. 機材スペアパーツ | 現状の機材の耐用年数が3年程度であることを踏まえ、維持管理体制が改善することも考慮して現実的な機材の耐用年数とパーツ交換周期は以下のとおり想定する。
| | 現状の機材の耐用年数が3年程度であることを踏まえ、維持管理体制が改善することも考慮して現実的な機材の耐用年数とパーツ交換周期は以下のとおり想定する。
| | 地上ポンプ: 5年、発電機：7年

| | ・想定されるパーツは発電機用の以下のもの。
| | - エンジンオイル（6ヶ月に一度）
| | - 燃料フィルター（6ヶ月に一度）
| | - オイルフィルター（6ヶ月に一度）
| | - エアクリーナー（6ヶ月に一度）
| | - ファンベルト（2年に一度）

| | - 想定されるパーツは地上ポンプ用の以下のもの。
| | - グラランドバッキン（1年に一度）
| | - メカニカルシール（1年に一度）
| | - ベアリング（3年に一度）
表 8.12: Godey 市 給水の施設維持管理方針(2)

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>大型機材</td>
</tr>
</tbody>
</table>
| | - 2020年から起算して耐用年数経過後に更新する。
| | - 援助団体による海外調達で無税措置になると仮定した。
| | - 通常O&M費用とは別に扱う（O&M費用計算に含まない）。 |
| 7. | 貯水槽等の清掃作業 |
| | - 電機事情や付帯機材の維持管理の難しさも考慮して全て人力の作業とする。
| | - 作業人員は現状と計画された施設の規模を考慮して算定。日ベースの作業員を雇用し、オペレーターの指導の基に清掃作業を行う。
| | - 清掃の対象は別表のとおりとし、道具は以下を利用。
| | - シャベル、土砂運搬箱、ブラシ、排水ポンプ、レイク |
| 8. | 緩速ろ過池のスラッジ除去作業 |
| | - 緩速ろ過池の性能を維持するために、状況にあわせてろ過層の条件整備を整える必要がある。
| | - 非常に技術的な難易度の高い作業になるため、作業は訓練を受けたテクニシャンが２人ついてオペレーターと作業員を指導しながら実施する。作業は全て人力で行う。 |
| 9. | その他メンテナンス作業 |
| | - 送水・中継ポンプ付随のパイプを取り外し、内部のスケールの除去を行う。 |
表 8.13: Godey 市の計画給水システムの各施設の通常運営と維持管理に関する作業(1)

<table>
<thead>
<tr>
<th>施設</th>
<th>施設仕様・能力 (規模)</th>
<th>作業</th>
<th>作業頻度 (所要時間)</th>
<th>担当スタッフ数 (シフト)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 河川水取水水路</td>
<td>コンクリート水路幅2m、深度5.5m、長さ: 20m スクリーン2箇所</td>
<td>1) スラッジ除去</td>
<td>1回/年、(6 時間)</td>
<td>テクニシャン1名 オペレーター1名 現場作業員20名</td>
<td>1) は乾季の河川水位が低い時に実施する。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) スクリーン清掃</td>
<td>4回/月、(各2 時間)</td>
<td>テクニシャン1名 オペレーター1名 現場作業員2名</td>
<td>2) スクリーンに詰まった大きなごみを除去する。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) 施設警備</td>
<td>毎日(24時間)</td>
<td>警備員1名 (3名シフト)</td>
<td>沈殿槽の底部を簡易的に清掃し、大きなごみを取り除く。</td>
</tr>
<tr>
<td>沈殿池</td>
<td>着水井を含む V= 46m3 1.5m x 5.7m x 5.4m</td>
<td>3) スラッジとごみの除去</td>
<td>4回/年、(各4 時間)</td>
<td>テクニシャン1名 オペレーター1名 現場作業員4名</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4) 施設警備</td>
<td>毎日(24時間)</td>
<td>警備員1名 (3名シフト)</td>
<td></td>
</tr>
<tr>
<td>2. ポンプ場</td>
<td>取水ポンプ2台(Q=66m3/時、H=15m) x 2台 配水ポンプ2台(Q=114m3/時、H=59 m) x 2 pump</td>
<td>1) ポンプ運転と停止</td>
<td>2回/日 8:00 - on, 18:00 - off (各15分) x 4 ポンプ</td>
<td>オペレーター2名 (4人シフト)</td>
<td>計画給水量: 2212m3/日 24時間連続運転</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) ポンプメンテナンス</td>
<td>1回/年 (各1日) x 4 ポンプ 1回/3年 (各1日) x 4 ポンプ</td>
<td>テクニシャン1名 (5人シフト) オペレーター1名 配管工2名 現場作業員2人</td>
<td>ポンプは各用途で、1台予備があり。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) 施設警備</td>
<td>毎日(24時間)</td>
<td>警備員1名 (3名シフト)</td>
<td>2) グランドパッキン、メカニカルシール、ベアリング交換</td>
</tr>
<tr>
<td>3. 発電機小屋</td>
<td>発電機2台 120kVA x 2台 予備1台</td>
<td>1) 発電機始動と停止</td>
<td>2回/日 8:00 - on, 18:00 - off (各15分) x 2 テクニシャン1名 (5人シフト) オペレーター1名 エンジンオイル、オイル・エアフィルタ、ベルト交換</td>
<td>1台バックアップ用を含めて発電機2台設置</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) 発電機メンテナンス</td>
<td>2回/年 (各2時間) x 2台 1回/年 (各2時間) x 2台</td>
<td>テクニシャン1名 オペレーター1名 現場作業員1名</td>
<td>エンジンオイル、オイル・エアフィルタ、ベルト交換</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) 施設警備</td>
<td>毎日(24時間)</td>
<td>警備員1名 (3名シフト)</td>
<td></td>
</tr>
<tr>
<td>4. 沈殿池</td>
<td>沈殿池 2池並列設置 (21 x 7 x 1.5m) x 2 池 V= 220 m3 x 2 池 うち1池は予備用</td>
<td>1) 堆積物除去</td>
<td>乾季: 1回/6ヶ月 (各2日) x 3池 雨季: 1回/2ヶ月 (各5日) x 3池</td>
<td>テクニシャン1名 (5人シフト) オペレーター1名 (2人シフト) 現場作業員15名</td>
<td>4池のうち通常は3池のみを利用。スラッジの除去は1池毎に実施する。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) 凝集剤・pH調整剤投入</td>
<td>1回/日 (60分)</td>
<td>テクニシャン1名 オペレーター1名 アシスタントオペレーター2名 ラボテクニシャン1名 (2名シフト)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) 倉庫資材管理</td>
<td>毎日</td>
<td>アシスタントオペレーター2名</td>
<td>3) 薬剤等の管理</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4) 施設警備</td>
<td>毎日 (24時間)</td>
<td>警備員1名 (3名シフト)</td>
<td></td>
</tr>
</tbody>
</table>
表 8.14: Godey 市の計画給水システムの各施設の通常運営と維持管理に関わる作業(2)

<table>
<thead>
<tr>
<th>施設</th>
<th>施設仕様・能力 (規模)</th>
<th>作業</th>
<th>作業頻度 (所要時間)</th>
<th>担当スタッフ数 (シフト)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. 粗ろ過池</td>
<td>砂ろ過槽 1基
 Q = 132 m³/時
 (6 x 5 x 1 m) x 6 池
 うち1池は予備用</td>
<td>1) 表面堆積物除去</td>
<td>2 回 / 年
 (各2日) x 5セット</td>
<td>テクニシャン1名
 オペレーター1名
 現場作業員1名</td>
<td>1) は全6池中 5池を通常使用
 1), 2) 清掃は1池 毎に実施</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) 砂ろ過槽清掃</td>
<td>1 回 / 年
 (6日) x 5セット</td>
<td>テクニシャン2名
 オペレーター2名
 現場作業員20名</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) 施設警備</td>
<td>毎日 (24時間)</td>
<td>警備員1名
 (3名シフト)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. 緩速ろ過池</td>
<td>砂ろ過槽 1基
 Q = 132 m³/時
 (20 x 10 x 1 m) x 5 池
 うち1池は予備用</td>
<td>1) 表面堆積物除去・ろ過層調整</td>
<td>6 回 / 年
 (各2日) x 5セット</td>
<td>テクニシャン1名
 オペレーター1名
 現場作業員1名</td>
<td>全5池中 4池を通常使用。
 1つは予備。
 1), 2) 清掃は8 chamber 毎に実施
 本システム中では一番技術的に難しい作業になる。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) 砂ろ過槽清掃</td>
<td>1 回 / 年
 (5日) x 5セット</td>
<td>テクニシャン2名
 オペレーター2名
 現場作業員20名</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) 施設警備</td>
<td>毎日 (24時間)</td>
<td>警備員1名
 (3名シフト)</td>
<td></td>
</tr>
<tr>
<td>7. 浄水池</td>
<td>浄水槽1槽
 (24 x 24 x 1.8m)
 V= 1,000 m³</td>
<td>1) タンクの清掃</td>
<td>1回 / 年
 (6時間)</td>
<td>テクニシャン1名
 オペレーター1名
 現場作業員20名</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) 塩素剤投入</td>
<td>1回 / 日
 (30分)</td>
<td>オペレーター1名
 アシスタントオペレーター1名</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) 施設警備</td>
<td>毎日 (24時間)</td>
<td>警備員1名
 (3名シフト)</td>
<td></td>
</tr>
<tr>
<td>8. 配水池 1</td>
<td>V= 400 m³
 11.8 x 11.8 x 3 m
 10 m 高架タンク</td>
<td>1) タンク内清掃</td>
<td>1回 / 年
 (4時間)</td>
<td>オペレーター1名
 現場作業員6名</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) 水位確認とバルブ操作</td>
<td>2回 / 日 (各20分)</td>
<td>オペレーター1名</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) 施設警備</td>
<td>毎日 (24時間)</td>
<td>警備員1名
 (3名シフト)</td>
<td></td>
</tr>
<tr>
<td>9. 配水池 2</td>
<td>V= 1,000m³</td>
<td>1) タンク内清掃</td>
<td>1回 / 4ヶ月
 (8時間)</td>
<td>オペレーター1名
 現場作業員12名</td>
<td></td>
</tr>
<tr>
<td>(既存施設)</td>
<td></td>
<td>2) 水位確認とバルブ操作</td>
<td>1回 / 日 (15分)</td>
<td>オペレーター1名</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) 施設警備</td>
<td>毎日 (24時間)</td>
<td>警備員1名
 (3名シフト)</td>
<td></td>
</tr>
<tr>
<td>10. 配水池 3</td>
<td>2タンク (予備用)
 V₁= 60m³
 V₂= 150m³</td>
<td>1) タンク内清掃</td>
<td>1回 / 4ヶ月
 (4時間) x 2タンク</td>
<td>オペレーター1名
 現場作業員12名</td>
<td>これらタンクは予備用</td>
</tr>
<tr>
<td>(既存施設)</td>
<td></td>
<td>2) 水位確認とバルブ操作</td>
<td>1回 / 日 (15分)</td>
<td>オペレーター1名</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) 施設警備</td>
<td>毎日 (24時間)</td>
<td>警備員1名
 (3名シフト)</td>
<td></td>
</tr>
<tr>
<td>11. 送・配水管システム</td>
<td>送水管</td>
<td>1) 管の修繕と交換</td>
<td>1回 / 6ヶ月 (5日)</td>
<td>オペレーター1名
 給水事務所エンジニア2名
 給水事務所配管工4人
 現場作業員20名</td>
<td>パイプ修繕は日常の点検の結果および利用者からの報告に基づいて行う。エンジニア・配管工は給水事務所より</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>送水管 D300：4,998m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>配水管 D 300：2,797m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D 200：1,384m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D 160以下：37 km</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注) オペレーターはテクニシャンの指示のもとで実際の作業を行う。テクニシャンは最低TVETC以上の教育歴が必要。
勤務人数とシフト: 各担当者の人数は任意の日に該当施設を担当勤務する職員の数、一方シフトの数は交代で勤務する全職員の数を示す。
表 8.15: Godey 市の計画給水システムの運営・維持管理費用

<table>
<thead>
<tr>
<th>費目</th>
<th>費用 (Birr/年)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>スペアパーツ</td>
<td>22,272</td>
<td>発電機と陸上ポンプ用スペアパーツ</td>
</tr>
<tr>
<td>電気・燃料</td>
<td>2,211,840</td>
<td>発電機と陸上ポンプ用の燃料と電気代</td>
</tr>
<tr>
<td>人員</td>
<td>954,096</td>
<td>主にフィールドスタッフと労働者の人件費</td>
</tr>
<tr>
<td>薬剤</td>
<td>707,724</td>
<td>水処理用薬剤の購入費</td>
</tr>
<tr>
<td>消耗品</td>
<td>33,372</td>
<td>消掃用の道具等</td>
</tr>
<tr>
<td>その他</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>3,929,304</td>
<td>米ドル換算 約 US$ 212,000</td>
</tr>
</tbody>
</table>

算定条件
- 表示した費用はVAT込みの2013年の価格
- 10年間の平均として算出
- 既存施設の維持管理も含む
- 費用は定期的な維持管理の出費で、事故対応および機材交換の出費を含まない

表 8.16: Godey 市給水システムの2020年から2030年の維持管理と機材更新費用

<table>
<thead>
<tr>
<th>年</th>
<th>運営・維持管理費</th>
<th>機材更新費</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>3,929,304</td>
<td>0</td>
<td>3,929,304</td>
</tr>
<tr>
<td>2020</td>
<td>8,313,459</td>
<td>0</td>
<td>8,313,459</td>
</tr>
<tr>
<td>2021</td>
<td>8,313,459</td>
<td>0</td>
<td>8,313,459</td>
</tr>
<tr>
<td>2022</td>
<td>8,313,459</td>
<td>0</td>
<td>8,313,459</td>
</tr>
<tr>
<td>2023</td>
<td>8,313,459</td>
<td>0</td>
<td>8,313,459</td>
</tr>
<tr>
<td>2024</td>
<td>8,313,459</td>
<td>0</td>
<td>8,313,459</td>
</tr>
<tr>
<td>2025</td>
<td>8,313,459</td>
<td>3,385,280</td>
<td>11,698,739</td>
</tr>
<tr>
<td>2026</td>
<td>8,313,459</td>
<td>0</td>
<td>8,313,459</td>
</tr>
<tr>
<td>2027</td>
<td>8,313,459</td>
<td>5,077,920</td>
<td>13,391,379</td>
</tr>
<tr>
<td>2028</td>
<td>8,313,459</td>
<td>0</td>
<td>8,313,459</td>
</tr>
<tr>
<td>2029</td>
<td>8,313,459</td>
<td>0</td>
<td>8,313,459</td>
</tr>
<tr>
<td>2030</td>
<td>8,313,459</td>
<td>3,385,280</td>
<td>11,698,739</td>
</tr>
</tbody>
</table>

単位: Birr
9. 運営維持管理
9 運営維持管理

9.1 現状の組織と管理体制

9.1.1 Godey市給水事務所

a. 組織の概要

Godey 市は 2011 年の中頃に郡から独立したばかりの新しい行政組織であり、市給水事務所もほぼ同時期に発足した。市給水事務所は Godey 市政府の一機関であり、Godey 市の給水システムの運営・維持管理を行っている。事務所設立の 8 ヶ月後に関連機関等からの代表 7 人からなる水委員会が設置され、市の給水問題を扱う諮問機関となったが、しばらく機能していなかった。暫定的に給水事務所が市の給水問題に関する全権を担っているが、給水事務所の決定は最終的に市政府の許可が必要である。2013 年 1 月に事務所の所長が交代し、これに伴い水委員会のメンバーも一部改選され、現在は以下の 10 名とされている。

議長：市長
副議長：副市長
書記：市給水事務所所長
委員：市財務事務所長
市の女性問題事務所長
市保健所長
市教育・能力向上事務所長
市電力公社長
市の長老代表者
市の女性組合

この2013年の所長の交代により、事務所の環境および給水状況が少し改善された。

b. 料金徴収

毎月末に職員（1人）が水道メーターの確認を行い、事務所で請求書を作製し、顧客に渡す。顧客は事務所で支払いを行い、職員は記帳後に集金した金を銀行口座に預ける。水 1 m³ あたりの価格は使用量や顧客タイプに無関係に 15 Birr に固定されている。水道メーターの利用はレンタルの場合があり、每月 8 Birr のレンタル料金を徴収する。また、公共水栓では料金を 1 m³ あたり 2 Birr 程度か、または無料と低く設定している。しかし、市内の No-1 のサイトでは施設が個人の敷地内に存在し、管理者が独自に料金設定を行い、払えない利用者を受け入れていなかったため、この給水ポイントの利用者は 10 世帯に満たなかったという問題を確認した。

料金の徴収は顧客の自主的な支払いに依存しているため、未払いや遅延のケースも多
く、月末の請求のタイミングで支払いをする利用者は60%程度である。一般の利用者で政府機関の職員等で月の収入が保証されている場合は数ヶ月の支払猶予を認めることもあるが、その他の場合は2ヶ月の滞納で給水を停止している。明確なデータは得られていないが、遅延する支払いも含めれば現状の料金回収率は70%程度になるものと推定される。

c. 活動予算

市給水事務所の活動予算はすべて水道料金の徴収分から賄われており、その額は月の平均で70,000 Birr程度である。2012年7月の新会計年度から、施設の維持管理と修理のための特別予算が市政府から執行されることになっているが、現時点（2012年11月）ではまだ行われておらず、今後の継続執行の可能性も不明である。また、2012年3月以前は、事務所独自の予算執行権限をもっていなかったため、予算はすべて郡水事務所により管理されていた。現在は顧客への給水量と徴収料金について帳簿に記録が行われており、出費に関しても1〜数ヶ月単位で市の政府に整理報告を行っている。

d. 維持管理作業

施設の運営・維持管理の日常の作業としては、取水ポンプの運転、市内の配水管の漏水修理、塩素剤投じがある。この他に貯水タンクの清掃（年1回）、沈砂池の清掃（月2回）、配水パイプの交換（不定期）などの作業を定期的に行っている（詳細は3巻、3.2.6節参照）。

e. 組織

事務所の職員は31名おり、そのうち12名が事務所勤務の職員である。組織は以下のようになっている。事務所は郡水事務所と建物を共有しており、倉庫を含めた4部屋を占有する（図9.1参照）。

![組織図](image.png)

注）カッコ内の数値は各部署の人員数

図9.1: Godey市給水事務所の組織図
職員は半数程度がTVETCレベルの教育を受けているが、実務経験に基づく知識は低く、特に若いスタッフは全く経験が無い。また日常業務も適切に行われている様子は無く、職員の業務に対する士気はあまり高くないが、2013年に入って所長が交代し、状況は改善しつつあるようである。

9.1.2 Godey市でのWASHCOの現状

WASHCOの組織をとおした住民による給水施設（主に公共給水栓）の管理は比較的新しいシステムであり、調査地域ではまだ普及の途上にある。

Godey市内には住民による給水施設管理のための組織は存在せず、今後市内の既存の6箇所の公共給水栓については組織する予定である。州水資源局の技術サポートによりWASHCOを組織する予定であるが、研修実施のための予算確保は事務所の責務であり、具体的な目処はたっていない。現在のところ、ほとんどの給水施設が個人の敷地内に設置されており、暫定的にその敷地の所有者が施設の管理を行っているが、管理者の個人的な都合で利用者の排除や料金徴収を行っているため、問題も発生している。調査団の独自の調査によると、稼働中の2箇所の公共給水ポイントで両者とも自宅の敷地内に給水ポイントがあり、その理由から土地所有者が管理人（Caretaker）に任命されている。また彼らは正式な訓練を受けていない。

9.1.3 WASHCOによる料金徴収状況

既存の給水施設の管理者であるCaretakerは20Lにつき0.5Birrの料金を徴収する一方で市給水事務所には1m³あたり15Birrの料金を支払っているため、利用者から徴収した金額の約6割を個人の収入として得ている。一方でこれが管理人としての報酬として認識されており、現在のWASHCOのボランティアで運営するという前提に相容れない状況にある。

都市部の各戸給水栓を保有する家庭や、周辺村落部で独自のBirkaを保有する家庭も周辺の住民に水を販売している。その場合の価格は公共水栓での購入に比べて高く、20Lタンクで1〜2Birrまたは1ヶ月で15Birr程度という設定である。また、雨季には他の水源が利用可能になるため、需要に応じて異なる料金が適用されている。

9.2 運営・維持管理面の評価と研修計画

9.2.1 機関と組織の評価

Godey市の現在の組織による施設の運営管理の現状は、各施設を担当する職員は全体で15人程度であり、十分ではない。現状ではシステムの運転時間も短く、薬剤投入も十分に行っていないため、なんとか対応できているが、ポンプ場ではオペレーターが長時間勤務を余儀なくされるなど、人員配置上の問題もある。また、事務を担当する内
勤のスタッフも、会計処理等を十分に出来ていないことが財務調査の過程で明らかになっている。これらの問題に対し、マスタープランの運営・維持管理計画では適切にシステムの運営・維持管理が行える規模のスタッフを確保するとの立場から、運営スタッフ数を3倍以上まで増員しており（8章参照）、新規採用により教育レベルの底上げを前提とする他、適切な技術判断が出来、オペレーターのチームを指導できるリーダー職を新設している。

住民レベルの管理組織であるWASHCOによる市内の公共水栓の管理は、既述のように現在はCaretakerによる管理が行われており、州の新しい方針であるWASHCOによる管理への移行に多少の問題を抱えているといえる。これに対しては能力向上研修計画にWASHCOやその母体となる地域住民への啓蒙活動を研修モジュールとして含め、徐々に意識の改革を行うよう計画した。

9.2.2 技術面の評価

6章で述べたように、市給水事務所の現在のスタッフはもともと十分な基礎教育を受けていない警備員が長期間のオペレーターの作業を手伝った結果、オペレーターに昇格する状況があるなど、スタッフの教育レベルが全体に低い。これにより施設運営上の技術的な課題への対応が難しくなっている。マスタープランの新規施設の稼動後は、利用する技術に特に新しいものはないが、施設の規模が大きくなることをはじめ、これまで適切に行ってきていなかった、水処理薬剤の投入を確実に行う必要がある。原水の高い濁度に対処するために浄水過程で3種類の薬剤を大量に、かつ原水濁度と流量に対応させて適量を投入する作業が必要になる。また、緩速ろ過施設は運転にエネルギーを必要とせず、維持管理費を抑えることが出来るものの、生物作用による浄化を基本とするため、ろ過層の管理が非常に難しく、高度の技術を要する。適切な運用にはまず沈殿地にて十分に濁度を落とし、季節による原水水質による流入水の水質を可能な限り一定に保つことが前提になる。これらに加え、発電機等の重要な機材も定期的なメンテナンスが行われておらず、故障の頻度を増やすばかりか、故障時の対応も現状では難しいと考えられる。すなわち現状では既存組織による運営・維持管理計画の実施は技術的に不可能である。

上記を考慮して、マスタープランの維持管理計画を実現可能なものとするために、給水施設建設中から実施する技術研修を中心とした研修を計画した（詳細は3巻3章、3.7節参照）。このうち、Godey市の計画給水システムの維持管理にかかわる研修はモジュール化されており、以下の内容のものである。

Module 5：河川給水システムの運営・維持管理
Module 6：WASHCO研修
Module 7：WASHCOフォローアップ研修
Module 8：住民の水衛生意識改善
Module 12: Godey 市浄水施設の運営
Module 13: Godey 市浄水施設の運営フォローアップ
Module 14: Godey 市浄水場の維持管理
Module 15: Godey 市水質検査研修
Module 17: 会計と財務の研修

上記研修のモジュールを章末の表 9.2から表 9.10に示す。Godey 市の給水計画実施にあたっては、図 9.2に示すスケジュールでこれらの研修を実施する必要がある。またこれらの Godey 市に関わる研修の実施には、直接的な経費として約 2,918,000 Birr から 3,285,000 Birr が必要と予想される。

9.2.3 総合評価

Godey 市の給水施設とその運営・維持管理について、これまで述べた現状とマスタープランでの対策について簡単に以下の表 9.1にまとめた。

<table>
<thead>
<tr>
<th>番目</th>
<th>現状</th>
<th>計画</th>
</tr>
</thead>
<tbody>
<tr>
<td>給水システム</td>
<td>河川取水→沈殿→ろ過→配水のシステム</td>
<td>- 既存と同様のシステムで規模が1.5倍程度</td>
</tr>
<tr>
<td></td>
<td>- 水圧不足で給水率は26%程度（市の一部のみ）</td>
<td>- 給水は市内のほぼ全てのエリア</td>
</tr>
<tr>
<td></td>
<td>- 済水施設が適切に運営されていない</td>
<td>- 適切な浄水処理による濁度低下と消毒</td>
</tr>
<tr>
<td>運営・管理組織規模</td>
<td>運営・維持管理に関わるスタッフ数は15人程度で少ない。</td>
<td>スタッフ数は50人まで増強し、専門家とリーダー職を設ける。</td>
</tr>
<tr>
<td>組織スタッフ技術レベル</td>
<td>技術・教育レベルが低く、適切な浄水上的運営が出来ていない。</td>
<td>新規採用による教育・技術レベルの向上</td>
</tr>
<tr>
<td></td>
<td>Godey 市のスタッフをターゲットとした専門研修等をプロジェクト実施段階から開始する。また運営開始後もフォローアップを行う。</td>
<td>Godey 市のスタッフをターゲットとした専門研修等をプロジェクト実施段階から開始する。また運営開始後もフォローアップを行う。</td>
</tr>
<tr>
<td>住民レベルの管理</td>
<td>既存の管理システムがWASHCO体制への移行の障壁になる可能性がある。</td>
<td>能力研修のモジュールにWASHCO関連の研修を含めて実施する。</td>
</tr>
<tr>
<td></td>
<td>住民の給水事業への理解・認識が低い。</td>
<td>同時に住民の給水と衛生意識向上のための活動も行う。</td>
</tr>
<tr>
<td>維持管理費用</td>
<td>水道料金からまかなっているが十分ではない。</td>
<td>運営管理者に対する会計・財務の研修の実施およびWASHCO対象の訓練により回収率向上を図る。</td>
</tr>
</tbody>
</table>

これまで述べたように、Godey 市の計画給水施設の運営・維持管理主体となる Godey 市給水事務所と WASHCO の組織面および技術面での能力は低く、現状では計画給水施設の運営・維持管理を適切に行えないのは明らかである。そのため、第 3巻の 3 章(給水施設の運営維持管理)に記載した本マスタープランで提案する維持管理計画を実施するための職員（フィールドスタッフ）を Godey 市が確保し、同時にこれら職員や WASHCO メンバーに計画した研修を確実に実施することがプロジェクト成功の必要条件になる。すなわち、これらの条件をクリアすることで運営・維持管理面からプロジェクトは実現可能と言える。
表 9.2: 共通河川水取水システムの運営維持管理

<table>
<thead>
<tr>
<th>1. モジュール名</th>
<th>5 CM-RIS-OM: River intake system maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. 期間</td>
<td>30日間</td>
</tr>
<tr>
<td>3. 目的</td>
<td>河川水取水システムの施設の維持管理方法と運転の作業を学ぶ</td>
</tr>
<tr>
<td>4. 対象者</td>
<td>- 表流水取水施設を利用郡・市の水事務所技術職員3名</td>
</tr>
<tr>
<td></td>
<td>- Care-taker（オペレーター、テクニシャン）全員</td>
</tr>
<tr>
<td></td>
<td>- 州水資源局担当職員1名</td>
</tr>
<tr>
<td>5. 内容</td>
<td>表流水取水システムの管理と発電機による陸上ポンプの運用と維持管理。</td>
</tr>
<tr>
<td></td>
<td>- 水源による水質の違い（地表水と地下水）</td>
</tr>
<tr>
<td></td>
<td>- 給水システムの概要と仕組み</td>
</tr>
<tr>
<td></td>
<td>- 陸上送水ポンプの仕組み</td>
</tr>
<tr>
<td></td>
<td>- 陸上送ポンプの日常メンテナンス作業実習（パッキン交換）</td>
</tr>
<tr>
<td></td>
<td>- 発電機の仕組み</td>
</tr>
<tr>
<td></td>
<td>- 発電機のメンテナンス理論（消耗部品の名称と機能）</td>
</tr>
<tr>
<td></td>
<td>- 発電機の日常メンテナンス作業実習（オイル、フィルター類交換）</td>
</tr>
<tr>
<td></td>
<td>- スペアパーツの調達方法</td>
</tr>
<tr>
<td></td>
<td>- 燃料の調達方法</td>
</tr>
<tr>
<td></td>
<td>- 塩素剤の利用方法と投入量の計算</td>
</tr>
<tr>
<td></td>
<td>- 塩素剤の調達方法</td>
</tr>
<tr>
<td></td>
<td>- 料金徴収の重要性</td>
</tr>
<tr>
<td></td>
<td>- Care-taker:オペレーターの仕事とメンテナンススケジュール作成</td>
</tr>
<tr>
<td></td>
<td>- 郡水事務所の責務と仕事</td>
</tr>
<tr>
<td></td>
<td>- 州水資源局の責務と仕事</td>
</tr>
<tr>
<td>6. 実施上の留意点</td>
<td>- 水事務所から数名の技術担当者を専任し、研修に参加させる。</td>
</tr>
<tr>
<td></td>
<td>- 施設の規模が大きくなるためにオペレーターが複数必要になる。その選定とトレーニングも兼ねる。</td>
</tr>
<tr>
<td></td>
<td>- 基本的に都市の河川水取水システムに順ずるが、故障時の対応や資材調達は州水資源局のサポートを受ける。</td>
</tr>
<tr>
<td>7. 期待される成果</td>
<td>- Care-taker、オペレーター、郡事務所、州水資源局の給水システム運営・維持管理に関わる職員間の役割が明らかになり、協力して作業を継続できるようになる。</td>
</tr>
<tr>
<td></td>
<td>- Care-taker、オペレーターは機材の運転状況を的確に把握し、問題を速やかに発見・報告できるようになる。</td>
</tr>
<tr>
<td>8. 予想される実施者</td>
<td>- コンサルタントと州水資源局または大学関係者技術者合同</td>
</tr>
<tr>
<td></td>
<td>- 技術者は事前に研修を受けた者</td>
</tr>
<tr>
<td>9. 必要資機材</td>
<td>- 発電機・陸上ポンプの実習用スペアパーツ</td>
</tr>
<tr>
<td></td>
<td>- 燃料（実習用）</td>
</tr>
<tr>
<td></td>
<td>- 塩素剤</td>
</tr>
<tr>
<td></td>
<td>- パイプレンチ等の一般工具セット</td>
</tr>
<tr>
<td></td>
<td>- 電工工具セット</td>
</tr>
<tr>
<td></td>
<td>- テスター</td>
</tr>
<tr>
<td></td>
<td>- 維持管理マニュアル</td>
</tr>
</tbody>
</table>
表 9.3: 共通・WASHCO 研修

<table>
<thead>
<tr>
<th>1. モジュール名</th>
<th>6. CM-WASH-T: WASHCO training</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. 期間</td>
<td>10日間</td>
</tr>
<tr>
<td>3. 目的</td>
<td>建設された新規公共水栓の住民による管理組織を結成し、メンバーが管理方法を学ぶ。</td>
</tr>
<tr>
<td>4. 対象者</td>
<td>各公共水栓の WASHCO メンバー（7名/サイト）</td>
</tr>
<tr>
<td>5. 内容</td>
<td>州水資源局のWASHCO研修に順ずる（マニュアル有り）。水料金の徴収と会計および資金の管理の項目を含める。</td>
</tr>
<tr>
<td>6. 実施上の留意点</td>
<td>可能であれば給水栓の位置選定段階から WASHCO を巻き込むため、直前に実施する。</td>
</tr>
<tr>
<td></td>
<td>- 都市部対象と村落部対象で管轄施設が異なり、研修内容に若干の違いがある。</td>
</tr>
<tr>
<td></td>
<td>- 複数の WASHCO を合同で研修する。</td>
</tr>
<tr>
<td></td>
<td>- 本調査で指摘した実施上の注意点を参考にする。</td>
</tr>
<tr>
<td>7. 期待される成果</td>
<td>WASHCO メンバーが管轄施設の最低限の維持管理を行うようになる。</td>
</tr>
<tr>
<td></td>
<td>- 利用者からの料金が確実に徴収される。</td>
</tr>
<tr>
<td>8. 期待される実施者</td>
<td>州水資源局、市給水事務所・郡水事務所</td>
</tr>
<tr>
<td>9. 必要資機材</td>
<td>- WASHCOマニュアル</td>
</tr>
<tr>
<td></td>
<td>- フリップチャート</td>
</tr>
<tr>
<td></td>
<td>- マーカー</td>
</tr>
<tr>
<td></td>
<td>- ノート</td>
</tr>
<tr>
<td></td>
<td>- ペン</td>
</tr>
</tbody>
</table>
表9.4: 共通・WASHCOフォローアップ研修

<table>
<thead>
<tr>
<th>1. モジュール名</th>
<th>7 CM-WASH-FT: WASHCO training</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. 期間</td>
<td>2-5日間（状況に依存）</td>
</tr>
<tr>
<td>3. 目的</td>
<td>既存のWASHCOに対し補完研修を行う。</td>
</tr>
<tr>
<td>4. 対象者</td>
<td>各公共水栓を管理するWASHCOメンバー</td>
</tr>
<tr>
<td></td>
<td>各給水システムを管理するWASHCOメンバー</td>
</tr>
<tr>
<td></td>
<td>Care-taker/オペレーター</td>
</tr>
<tr>
<td>5. 内容</td>
<td>州水資源局のWASHCO研修に順ずるが、まず現状把握を行う。</td>
</tr>
<tr>
<td></td>
<td>現状問題点の把握のためのディスカッション</td>
</tr>
<tr>
<td></td>
<td>把握した問題点の解決策の検討</td>
</tr>
<tr>
<td></td>
<td>WASHCOマニュアルに則した活動内容の確認</td>
</tr>
<tr>
<td></td>
<td>補完研修実施</td>
</tr>
<tr>
<td>6. 実施上の留意点</td>
<td>メンバーの欠員がある場合は補充する。</td>
</tr>
<tr>
<td></td>
<td>都市部対象と村落部対象で管轄施設が異なり、研修内容に違いがある。</td>
</tr>
<tr>
<td>7. 期待される成果</td>
<td>WASHCOメンバーが活動を再開し、管轄施設の最低限の維持管理を行うようになる。</td>
</tr>
<tr>
<td></td>
<td>利用者からの料金が確実に徴収されるようになる。</td>
</tr>
<tr>
<td>8. 期待される実施者</td>
<td>州水資源局、市給水事務所・郡水事務所</td>
</tr>
<tr>
<td>9. 必要資機材</td>
<td>WASHCOマニュアル</td>
</tr>
<tr>
<td></td>
<td>プリントチャート</td>
</tr>
<tr>
<td></td>
<td>マーカー</td>
</tr>
<tr>
<td></td>
<td>ノート</td>
</tr>
<tr>
<td></td>
<td>ペン</td>
</tr>
</tbody>
</table>
表9.5: 共通・住民の水衛生意識改善の研修

<table>
<thead>
<tr>
<th>1. モジュール名</th>
<th>8 CM-WS-AT: Water and sanitation awareness training</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. 期間</td>
<td>3日間</td>
</tr>
</tbody>
</table>
| 3. 目的 | - WASHCO メンバーに水衛生の意識改善と給水事業の重要性を確認のための講義を行い、地域住民の感化を促す。
 - 塩素剤の正しい利用方法を住民に教える。 |
| 4. 対象者 | - 各公共水栓の既存・新規 WASHCO メンバー、住民代表
 - 合計30名まで |
| 5. 内容 | - 講義と実習 |
| | - 水の衛生的利用についての講義 |
| | - 安全な水の利用の意識改善の話（デモを含む） |
| | - 給水施設の保護と適切な利用方法 |
| | - 水の消毒・衛生的保管のノウハウ（煮沸の例、優先的用途） |
| | - 塩素剤による消毒の実習 |
| | - 塩素剤の入手方法 |
| | - 意識改善のための住民への広報の方法 |
| 6. 実施上の留意点 | - 郡内の複数の WASHCO のメンバーおよび地域住民の指導的立場の人を対象とする。
 - 水衛生観念が低いことが、給水プロジェクト等への住民の協力体制が弱い原因の一つであることを認識しておく。 |
| 7. 期待される成果 | WASHCOメンバーが地域住民に塩素剤の正しい使い方を説明し、入手方法について知らせ、対象地域の家庭での塩素剤の利用が促進される。 |
| 8. 期待される実施者 | 県水資源局、NGO |
| 9. 必要資機材 | - フリップチャート
 - マーカー
 - ノート
 - ペン
 - 塩素剤サンプル
 - 水衛生マニュアル |
表 9.6: Godey 市 浄水施設の運営

<table>
<thead>
<tr>
<th>1. モジュール名</th>
<th>12 GD-WT: Water Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. 間</td>
<td>20日間</td>
</tr>
<tr>
<td>3. 目的</td>
<td>高濁度原水に対応するための処理の手順を学ぶ</td>
</tr>
</tbody>
</table>
| 4. 対象者 | - Godey 市給水システムのテクニシャン全員
 - Godey 市給水システムのオペレーター全員
 - Godey 市給水システムのアシスタントオペレーター全員
 - Godey 市給水システムの水質試験テクニシャン全員
 - 市給水事務所技術者 1-2 名 |
| 5. 内容 | 理論と実習
 - 浄水処理の基本（凝集・沈殿・ろ過・殺菌・残留塩素）
 - 各施設での必要作業の確認
 - 凝集剤の投入量の調整技術
 - pH 調整剤の投入量の調整技術
 - 塩素剤の投入量の調整技術
 - 薬剤タンクの使用方法
 - 利用する薬剤の物理化学的性質
 - 各薬剤の取り扱いと保管方法
 - 各薬剤の調達スケジュールと予算確保
 - 水質（濁度、残留塩素）のモニタリング方法
 - 簡易な名流量の把握方法
 - 計算機の使い方 |
| 6. 実施上の留意点 | - テクニシャンおよび給水事務所の担当技術者には特に確実に理解・習得させる必要がある。
 - 処理した水の水質をモニタリングすることを徹底させる。
 - 演習を繰り返し行い、作業内容を身に付けるようにする。
 - 施設運営開始の直前に実施する。 |
| 7. 期待される成果 | テクニシャンの支持の下でオペレーターが適切に薬剤の管理・計量・投入を行い、沈殿池段階で効果的に濁度を落とすことが出来るようになる。 |
| 8. 予想される実施者 | アジアペア水道局（AAWSA）、大学と民間コンサルタント共同、外国人技術者 |
| 9. 必要資機材 | ・水質分析キット
 ・薬剤利用マニュアル
 ・各薬剤サンプル
 ・200Lタンク
 ・計算機
 ・ばねばかり
 ・バケツ
 ・ゴム手袋セット |
表 9.7: Godey 市 凃水施設の運営のフォローアップ

| 1. モジュール名 | 13 GD-WT-FUP: Water Treatment Follow up |
| 2. 期間 | 研修後 2 ヶ月間：毎週 1 回（2日）
研修後 3～12ヶ月の間：毎月 1 回（2日） |
| 3. 目的 | 研修モジュール GD-WT で習得した技術適用の現場でのフォローアップと改善指導 |
| 4. 対象者 | 市給水システムの担当オペレーターおよびテクニシャン（各出勤者）
市給水事務所技術者数名 |
| 5. 内容 | 現場での薬剤投入・清掃等状況確認
問題点の洗い出しと討議
改善のための指導 |
| 6. 実施上の留意点 | 現場の抱える問題に応じて臨機応変に内容を変えるため、講師には経験を積んだ人材が必要。
実際の運転期間中に実施する |
| 7. 期待される成果 | 市給水事務所の担当オペレーターとテクニシャンが運用の間違いに気づき、これを改善する |
| 8. 予想される実施者 | アジスアベバ水道局（AAWSA）、外国人技術者、大学・民間コンサルタント共同 |
| 9. 必要資機材 | ・フリップチャート
・マーカー |
表 9.8: Godey 市 浄水場の維持管理

1. モジュール名	14 GD-PM: Plant maintenance
2. 期間	10日間
3. 目的	浄水場の関連施設と機材のメンテナンスの方法を学ぶ
4. 対象者	- Godey 市給水システムの担当オペレーターとテクニシャン
	- 市給水事務所技術者数名
	- 州水資源局技術担当職員
5. 内容	研修は主に浄水施設内で利用されている施設と機材の維持管理を扱う。
	- ポンプのメンテナンス (スペアパーツ交換)
	- バイブ、バルブの清掃
	- 発電機のメンテナンス
	- 沈殿池の清掃方法
	- ろ過池の清掃方法
	- スラッジの廃棄・保管方法
	- 貯水タンクの清掃
	- 維持管理計画の検討
6. 実施上の留意点	本調査で提案した維持管理計画を基に、研修実施時または将来の人員配置状況と施設の詳細仕様にあわせて効率的な作業方法とスケジュールを提案し、現場実習を行う。
	沈殿池からのスラッジは大量のため、環境に配慮した廃棄・保管を行う。
7. 期待される成果	オペレーターとテクニシャンが適切にシステムの維持管理を行い、システムが継続的に運転される。
8. 予想される実施者	州水資源局技術者、AAWSA技術者、外国人技術者、
9. 必要資機材	- シャベル
	- スクレイバー（自作）
	- バケツ
	- 土砂運搬容器
	- 排水ポンプ
	- 発電機（小型）
	- ホース
	- 燃料

9-12
表 9.9: Godey 市 水質検査研修

1.	シリーズ名	15	GD-WQ: Water quality
2.	期間	20日間	
3.	目的	済水処理に関連する水質検査の基礎知識と技術を習得する	
4.	対象者	- Godey 市給水システムの水質試験クニシャン全員	
		- 同オペレーター数名およびテクニシャン全員	
5.	内容	理論と実習	
		- 水と化学物質の基礎知識（水の性質、酸とアルカリ、酸化と還元、濃度、濁度、凝集沈殿、病原菌、塩素の性質）	
		- 凝集剤の種類と作用（効果の pH 依存性）	
		- 塩素剤の種類と作用	
		- 凝集剤効果のジャーテストの方法	
		- 濁度の試験方法	
		- 残留塩素試験法	
		- pH と EC の測定法	
		- 流量の簡易観測方法（計器を利用しない）	
		- 計算機の使い方	
6.	実施上の留意点	テクニシャンおよび給水事務所の担当技術者も十分に理論を理解し、試験の内容を把握しておく必要がある。	
7.	期待される成果	水質試験テクニシャンが毎日正確に水質検査の結果を出し、テクニシャンとオペレーターに報告できるようになる。	
8.	予想される実施者	アジスアベバ水道局 (AAWSA)、大学研究員、外国人技術者	
9.	必要資機材	- 簡易水質分析キット（濁度、蒸発残留物、残留塩素、大腸菌）	
		- カラーチャート（濁度判定用）	
		- ジャーテスト用器具	
		- pHメーター	
		- ECメーター	
		- 秤量天秤	

9-13
<table>
<thead>
<tr>
<th>1. モジュール名</th>
<th>17 CM-ACF: Accounting and Finance</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. 期間</td>
<td>5日間</td>
</tr>
<tr>
<td>3. 目的</td>
<td>適切な財務管理実施のための動機付けとそのための理論と技術を学ぶ。</td>
</tr>
<tr>
<td>4. 対象者</td>
<td>郡水事務所または郡役所の職員（所長、会計、出納係）</td>
</tr>
<tr>
<td></td>
<td>市給水事務所の所長と会計担当、出納係</td>
</tr>
<tr>
<td>5. 内容</td>
<td>会計の基礎知識</td>
</tr>
<tr>
<td></td>
<td>公営組織の会計</td>
</tr>
<tr>
<td></td>
<td>出納帳のつけ方</td>
</tr>
<tr>
<td></td>
<td>資金・現金の取り扱い</td>
</tr>
<tr>
<td></td>
<td>会計の報告</td>
</tr>
<tr>
<td></td>
<td>会計と出納係の役割</td>
</tr>
<tr>
<td>6. 実施上の留意点</td>
<td>現場の（ソマリ州の）システムに則した研修内容とする。</td>
</tr>
<tr>
<td></td>
<td>対象者が少ないため、近隣の数郡をまとめて実施する。</td>
</tr>
<tr>
<td></td>
<td>研修対象者は郡役所より参加する可能性がある。</td>
</tr>
<tr>
<td>7. 期待される成果</td>
<td>郡水事務所（郡役所）の職員が適切に会計を行い、記録をとれるようになる。</td>
</tr>
<tr>
<td>8. 予想される実施者</td>
<td>民間コンサルタント会社</td>
</tr>
<tr>
<td>9. 研修に必要な資機材</td>
<td>研修マニュアル</td>
</tr>
<tr>
<td></td>
<td>フリップチャート</td>
</tr>
<tr>
<td></td>
<td>電卓</td>
</tr>
<tr>
<td></td>
<td>ノート等</td>
</tr>
</tbody>
</table>

注）郡水事務所は財務担当の職員がいないため、対象は郡役所の財務担当職員となる。
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>施設設置スケジュール</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Godey town</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) 州水資源局</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 RMB-WS</td>
<td>0.3</td>
<td></td>
<td>0.3</td>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 RMB-MWS</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4) Godey市</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05 CM-RIS-OIM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>06 CM-WASH-T</td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07 CM-WASH-FT</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08 CM-WAS-AT</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 GD-WT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>13 GD-WT-FUP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1 0.1 0.1 0.1 0.6</td>
</tr>
<tr>
<td>14 GD-FIM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>15 GD-WQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>17 CM-ACF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

注）表中の数値は研修モジュール実施の回数を示す。色の濃いセルは建設工事の集中する期間を示す。

図 9.2: Godey 市の短期－中期能力向上研修スケジュール
10. 環境社会配慮
10 環境社会配慮

10.1 初期環境影響評価結果

Godey 市での給水計画に基づく事業実施によって予想される負の影響（現状では影響が不明）に関して、JICA ガイドラインにおける初期環境影響評価（IEE に相当）の結果を表 10.1 に示す。

表 10.1: Godey 市における初期環境影響評価結果

<table>
<thead>
<tr>
<th>No.</th>
<th>影響</th>
<th>評定</th>
<th>理由・備考</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>建設中</td>
<td>供与中</td>
</tr>
<tr>
<td>2</td>
<td>雇用・生計等の地域経済</td>
<td>d</td>
<td>c</td>
</tr>
<tr>
<td>5</td>
<td>既存インフラ・公共サービス</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>22</td>
<td>大気汚染</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>26</td>
<td>騒音・振動</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>30</td>
<td>事故の増加</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

a: 重大な負の影響が予想される
b: 一定の負の影響が予想される
c: 現時点では影響が不明
d: 影響が予測されない、もしくは極めて軽微な影響が予測される

スコーシング評定結果（負の影響）を以下に整理する。

a 評定（重大な負の影響が予想される）：予見される項目はない
b 評定（一定の負の影響が予想される）：予見される項目はない
c 評定（現時点では影響が不明）

建設段階：既存インフラ・公共サービス、大気汚染、騒音・振動、事故の増加
供与段階：雇用・生計等の地域経済
10.2 緩和対策

Godey 市における給水計画が環境・社会に与える影響に関して検討した結果、深刻な負の影響（a評定）及び一定の負の影響（b評定）は建設段階、供与段階ともに見当たらず、いずれも現時点では影響が不明（c評定）のみが予見された。これらの負と考えられる影響は、適切な対策を講じることによって、軽減することが可能である。そこで、表 10.2 にこれらの影響に対する緩和策を検討した。

表 10.2：予想される負の影響に対する緩和策

<table>
<thead>
<tr>
<th>項目</th>
<th>影響</th>
<th>緩和策</th>
</tr>
</thead>
<tbody>
<tr>
<td>既存インフラ・公共サービス</td>
<td>建設資材/廃棄物の輸出入による大気汚染（粉じん）、騒音・振動</td>
<td>工事内容とその予定に関する公示、工事作業、資材等運搬車両運行に係る時間帯の取り決め、交通整理要員の配置、工事車両の慎重な運転と速度制限、建設業者による工事車両運転手、建設作業員への交通指導の徹底、道路整備による粉じん発生の抑制、荷物の飛散防止カバーの設置、周辺住民からの苦情を受け付ける窓口の設置とその担当者の配置（苦情等への迅速な対応）</td>
</tr>
<tr>
<td>大気汚染</td>
<td>資材運搬や建設活動に伴う粉じんの発生、建設車両・機械等から排出される排気ガスによる影響</td>
<td>建設車両・機械等の慎重な運転と速度制限、建設車両・機械等の予防保守の徹底、排出ガス対策型建設機械の積極的な使用、要望・苦情窓口の設置</td>
</tr>
<tr>
<td>騒音・振動</td>
<td>建設車両・機械等の稼働及び走行に起因する騒音・振動による影響</td>
<td>建設車両・機械等の慎重な運転と速度制限、建設車両・機械等の予防保守の徹底、要望・苦情窓口の設置</td>
</tr>
<tr>
<td>事故の増加</td>
<td>建設車両の増加による交通事故のリスク増加、導水管・配水管工事に伴う道路幅員の減少</td>
<td>工事内容とその予定に関する公示、工事作業、資材等運搬車両運行に係る時間帯の取り決め、交通整理要員の配置、工事車両の慎重な運転と速度制限、建設業者による工事車両運転手、建設作業員の交通指導の徹底、苦情を受け付ける窓口の設置とその担当者の配置</td>
</tr>
<tr>
<td>雇用・生計等の地域経済</td>
<td>現行の水源の管理者（販売者）と購入者（小売）への生計影響</td>
<td>（自由に取水できる新規水源の開発が計画されているため、特段の緩和策を講じる必要はない。）</td>
</tr>
</tbody>
</table>
11. 経済・財務評価
11 経済・財務評価

11.1 はじめに

Godey 市給水計画の経済的並びに財務的妥当性を評価するため、費用便益分析を行なった。経済分析では経済的内部収益率（EIRR）を算定するため、経済的費用と便益を比較し、財務評価ではプロジェクトの持続的な運営の観点から、維持管理費用の回収可能性のチェックを行った。

11.2 経済評価

11.2.1 基本前提

経済評価に当たっての前提条件は下記の通りである。
(1) 米ドルとエチオピア・ブランドとの交換レートを US$1.00 = 18.53 Birr(プレ)とする。
このレートは2012年11月から2013年4月までの公的交換レートの平均値である。
(2) 事業費の積算年は2013年である。
(3) 事業の便益は直接的でかつ明白なもののみを算定対象とした。算定期間は2015年から2034年の20年間である。
(4) 利子や税金等の移転支出項目は計算から除外する

11.2.2 経済的事業費

Godey 市給水システムの経済評価における事業費（経済的建設費）は、以下に示すように、給水施設の建設事業費と維持管理費用から成る。

a. 経済的建設事業費

経済的建設事業費は給水施設の建設工事費、設計・施工管理費および事務費・物的予備費から成る。税金や価格予備費は含まれない。また、本計画では事業費の内貨部分の比率が低いため、内貨分を対象とする財務的便益の経済的事業費への変換はこの評価では適用しない。

上記の条件で算定した建設事業費の総額は、表11.1に示すように、880万5千USドルである。

| 表11.1: Godey市給水計画の経済的建設事業費 |
|-----------------|----------------|----------------|----------------|
| | 2015年 | 2016年 | 2017年 | 2018年 | 合計 |
| 1. 建設費 | 0 | 2,348,000 | 2,348,000 | 2,347,000 | 7,043,000 |
| 2. 設計・施工管理費 | 264,000 | 264,000 | 264,000 | 265,000 | 1,057,000 |
| 3. 事務・物的予備費 | 176,000 | 176,000 | 176,000 | 177,000 | 705,000 |
| ベース・コスト | 440,000 | 2,788,000 | 2,788,000 | 2,789,000 | 8,805,000 |

単位：USドル
b. 維持管理費

維持管理費は US$ 212,050（2013 年価格）であり、この金額には部品代、電気代、人件費、消耗品代等が含まれている。

11.2.3 経済的便益

プロジェクトから発生するいくつかの経済便益の中から、水汲み時間の削減便益と健康改善便益を算定した。その他の便益（例えば、日常生活の快適さ等）については数量化が難しいため、算定していない。すなわち年間の経済便益は水汲み時間の削減便益と健康改善便益の合計である。以下に各便益算出の詳細を記す。

a. 水汲み時間の削減便益

水汲み時間の削減便益は事業の実施後、水源までの距離が短縮されることによって生じる。削減の効果は事業を実施した場合（with the project）と事業を実施しなかった場合（without the project）の差として算定される。水汲み時間には水源までの往復の移動時間、待機時間および水汲みに要する時間が含まれる。便益の数値化は社会経済調査のデータをもとに以下のように行った。

「事業を実施しなかった場合」の水汲み時間は乾季における水汲み時間である一世帯当たり平均 3.8 時間を想定した。一方、「事業を実施した場合」の水汲み時間は雨季における水汲み時間である 1.4 時間を想定した。従って、水汲み時間の削減効果は一世帯平均で一日につき 2.4 時間となる。

水汲み時間の削減効果は、短縮時間と経済的労働コストから算定される。削減された時間のうち、50%は生産的な活動に使用され、残り 50%は無価値と考える。生産的な活動の価値は調査地域における労働コストである一日当たり 100Birr を基準として考慮した。削減された 2.4 時間の価値は、1 日 8 時間労働を仮定すれば一日当たり 15Birr の価値を有していると算定される（100 Birr x 50% x 2.4h / 8h）。年間では 300 日を労働時間として 4,500Birr（242.85 US ドル）に相当する。

水汲み時間の削減便益は施設完成直後の 2019 年から発生し、2020 年以降は一定の額で推移すると仮定した（表 11.2 参照）。

b. 健康改善便益

健康改善便益は、水質の改善と給水量の増加の結果として得られる。便益は改善された給水事業が「実施された場合（with the project）」と「実施されなかった場合（without the project）」の医療費の差として算定される。

世銀等の主要援助機関の試算では、清潔で安全な飲料水の供給によって一人当たりの医療コストは 10 % 削減されるものと考えられる。従って、事業の対象地域では安全

1 Annex 9, Project Appraisal Report, Water Supply and Sanitation Project, World Bank, 2004
な水の供給によって、毎年 10％の医療費の削減効果があるものと想定した。本調査の社会経済調査の結果から、Godey 市の平均医療コストは 1,076Birr である。従って、健康改善効果は世帯当たり 107Birr と想定した。健康改善便益は水汲み時間削減便益と同様に施設完成の翌年 2019 年から発生し、2020 年以降は一定の額で推移するものとする（表 11.2 参照）。

11.2.4 経済評価

前節で述べた条件に基づいて年間の総事業費と便益のキャッシュフローを比較し、プロジェクト実施の妥当性を判定するための経済指標を算定した。その結果、表 11.2 に示すように、経済的内部収益率（EIRR）は 13.8％であった。すなわち、本プロジェクトの経済的内部収益率（EIRR）は資本の機会費用である 10％を超えており、純現在価値（NPV）は正の値を示し、便益費用比率（B/C）は 1.0 を超えていることから、プロジェクトは経済的な妥当性を有していることが判明した。

表 11.2: 経済指標算定のためのキャッシュフロー

<table>
<thead>
<tr>
<th>年度</th>
<th>水汲み時間削減</th>
<th>健康改善</th>
<th>計</th>
<th>建設事業費</th>
<th>維持管理費</th>
<th>計</th>
<th>純キャッシュフロー</th>
<th>割引係数（10％）</th>
<th>現在価値（10％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>440,000</td>
<td>0</td>
<td>-440,000</td>
<td>-440,000</td>
<td>0.909</td>
<td>-400,000</td>
</tr>
<tr>
<td>2016</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2,788,000</td>
<td>0</td>
<td>-2,788,000</td>
<td>-2,788,000</td>
<td>0.826</td>
<td>-2,304,132</td>
</tr>
<tr>
<td>2017</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2,788,000</td>
<td>0</td>
<td>-2,788,000</td>
<td>-2,788,000</td>
<td>0.751</td>
<td>-2,094,666</td>
</tr>
<tr>
<td>2018</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2,789,000</td>
<td>0</td>
<td>-2,789,000</td>
<td>-2,789,000</td>
<td>0.683</td>
<td>-1,904,925</td>
</tr>
<tr>
<td>2019</td>
<td>1,744,287</td>
<td>41,478</td>
<td>1,785,765</td>
<td>0</td>
<td>212,051</td>
<td>212,051</td>
<td>1,573,714</td>
<td>0.621</td>
<td>977,152</td>
</tr>
<tr>
<td>2020</td>
<td>1,795,046</td>
<td>42,685</td>
<td>1,837,730</td>
<td>0</td>
<td>212,051</td>
<td>212,051</td>
<td>1,625,679</td>
<td>0.564</td>
<td>917,654</td>
</tr>
<tr>
<td>2021</td>
<td>1,795,046</td>
<td>42,685</td>
<td>1,837,731</td>
<td>0</td>
<td>212,051</td>
<td>212,051</td>
<td>1,625,680</td>
<td>0.513</td>
<td>834,231</td>
</tr>
<tr>
<td>2022</td>
<td>1,795,046</td>
<td>42,685</td>
<td>1,837,731</td>
<td>0</td>
<td>212,051</td>
<td>212,051</td>
<td>1,625,680</td>
<td>0.467</td>
<td>758,392</td>
</tr>
<tr>
<td>2023</td>
<td>1,795,046</td>
<td>42,685</td>
<td>1,837,731</td>
<td>0</td>
<td>212,051</td>
<td>212,051</td>
<td>1,625,680</td>
<td>0.424</td>
<td>689,447</td>
</tr>
<tr>
<td>2024</td>
<td>1,795,046</td>
<td>42,685</td>
<td>1,837,731</td>
<td>0</td>
<td>212,051</td>
<td>212,051</td>
<td>1,625,680</td>
<td>0.386</td>
<td>626,770</td>
</tr>
<tr>
<td>2025</td>
<td>1,795,046</td>
<td>42,685</td>
<td>1,837,731</td>
<td>0</td>
<td>212,051</td>
<td>212,051</td>
<td>1,625,680</td>
<td>0.350</td>
<td>569,791</td>
</tr>
<tr>
<td>2026</td>
<td>1,795,046</td>
<td>42,685</td>
<td>1,837,731</td>
<td>0</td>
<td>212,051</td>
<td>212,051</td>
<td>1,625,680</td>
<td>0.319</td>
<td>517,992</td>
</tr>
<tr>
<td>2027</td>
<td>1,795,046</td>
<td>42,685</td>
<td>1,837,731</td>
<td>0</td>
<td>212,051</td>
<td>212,051</td>
<td>1,625,680</td>
<td>0.290</td>
<td>470,902</td>
</tr>
<tr>
<td>2028</td>
<td>1,795,046</td>
<td>42,685</td>
<td>1,837,731</td>
<td>0</td>
<td>212,051</td>
<td>212,051</td>
<td>1,625,680</td>
<td>0.263</td>
<td>428,092</td>
</tr>
<tr>
<td>2029</td>
<td>1,795,046</td>
<td>42,685</td>
<td>1,837,731</td>
<td>0</td>
<td>212,051</td>
<td>212,051</td>
<td>1,625,680</td>
<td>0.239</td>
<td>389,175</td>
</tr>
<tr>
<td>2030</td>
<td>1,795,046</td>
<td>42,685</td>
<td>1,837,731</td>
<td>0</td>
<td>212,051</td>
<td>212,051</td>
<td>1,625,680</td>
<td>0.218</td>
<td>353,795</td>
</tr>
<tr>
<td>2031</td>
<td>1,795,046</td>
<td>42,685</td>
<td>1,837,731</td>
<td>0</td>
<td>212,051</td>
<td>212,051</td>
<td>1,625,680</td>
<td>0.198</td>
<td>321,632</td>
</tr>
<tr>
<td>2032</td>
<td>1,795,046</td>
<td>42,685</td>
<td>1,837,731</td>
<td>0</td>
<td>212,051</td>
<td>212,051</td>
<td>1,625,680</td>
<td>0.180</td>
<td>292,393</td>
</tr>
<tr>
<td>2033</td>
<td>1,795,046</td>
<td>42,685</td>
<td>1,837,731</td>
<td>0</td>
<td>212,051</td>
<td>212,051</td>
<td>1,625,680</td>
<td>0.164</td>
<td>265,812</td>
</tr>
<tr>
<td>2034</td>
<td>1,795,046</td>
<td>42,685</td>
<td>1,837,731</td>
<td>0</td>
<td>212,051</td>
<td>212,051</td>
<td>1,625,680</td>
<td>0.149</td>
<td>241,647</td>
</tr>
<tr>
<td>28,669,977</td>
<td>681,753</td>
<td>29,351,729</td>
<td>8,805,000</td>
<td>3,392,816</td>
<td>12,197,816</td>
<td>0.138</td>
<td>1,951,154</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

内部収益率（EIRR）	13.8％
純現在価値（NPV）	2.0 百万 USD
便益費用比率（B/C）	1.2
11.3 財務評価

11.3.1 財務的事業費

財務的建設事業費は給水施設の建設工事費、設計・施工管理費、事務費・物的予備費および価格変動予備費から成る。また、事業費の内貨部分の比率が低いため、財務的事業費の経済的事業費への変換は経済評価と同様この評価では適用しない。

財務的建設事業費のベース・コストは、880万5千USドルであり、これに事務費・価格変動費を加えた建設事業費は表11.3に示すように、993万4千USドルである。

<table>
<thead>
<tr>
<th>項目</th>
<th>2015年</th>
<th>2016年</th>
<th>2017年</th>
<th>2018年</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>建設費</td>
<td>0</td>
<td>2,348,000</td>
<td>2,348,000</td>
<td>2,347,000</td>
<td>7,043,000</td>
</tr>
<tr>
<td>設計・施工管理費</td>
<td>264,000</td>
<td>264,000</td>
<td>264,000</td>
<td>265,000</td>
<td>1,057,000</td>
</tr>
<tr>
<td>事務・物的予備費</td>
<td>176,000</td>
<td>176,000</td>
<td>176,000</td>
<td>177,000</td>
<td>705,000</td>
</tr>
<tr>
<td>ベース・コスト</td>
<td>440,000</td>
<td>2,788,000</td>
<td>2,788,000</td>
<td>2,789,000</td>
<td>8,805,000</td>
</tr>
<tr>
<td>価格変動予備費等</td>
<td>34,000</td>
<td>366,000</td>
<td>366,000</td>
<td>363,000</td>
<td>1,129,000</td>
</tr>
<tr>
<td>合計</td>
<td>474,000</td>
<td>3,154,000</td>
<td>3,154,000</td>
<td>3,152,000</td>
<td>9,934,000</td>
</tr>
</tbody>
</table>

11.3.2 評価結果

a. 費用便益分析

本調査の結果から、Godey市の現行水道料金は15Birr/m³である。そのため、平均的な6人家族の世帯で一人一日20L利用しても、年間の世帯あたりの支払い額はUS$35程度で、Godey市の人口規模では年間でUS$215,000程度の収入にしかならない。これは表11.2の年間投資額の10分の1以下であり、プロジェクトから得られる水道料金収入では事業費を回収することは明らかに不可能である。そのため、本プロジェクトでは、財務的内部収益率（FIRR）などの費用便益分析は行わない。

b. 運営維持管理費の回収

一方、事業費に比較すると低額な運営・維持管理費を水道料金で回収出来る可能性があることから、将来の水道料金を検討するために以下の料金を想定して運営・維持管理費と水道料金の比較検討を行った。

1) Kabribeyah市の給水事務所の現行水料金で検討：10Birr（0.54USD）/m³
2) Godey市の給水事務所の現行水料金で検討：15Birr（0.81USD）/m³
3) Godey市の現行水料金で検討：15Birr（0.81USD）/m³
4) 試算として2)と3)の中間値で検討：32.5 Birr（1.7USD）/m³

この4つの水料金に対して2020年の年間運営・維持管理費はUS$448,648である。運営・維持管理費は新規と既存の施設を対象としているため、第2巻2章に記載した2020年での
人口予測 36,958人を対象に住民が支払う水料金の総額と年間の運営・維持管理費を比較し、運営・維持管理費を100％回収するために必要となる料金回収率を検討した。結果を表 11.4に示す。

表 11.4: 水道料金による運営・維持管理費用回収の検討

<table>
<thead>
<tr>
<th>ケース</th>
<th>水道料金 (Biir/m³)</th>
<th>年間運営・維持管理費 (US$)</th>
<th>年間最大徴収額 (US$)</th>
<th>必要回収率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ケース 1</td>
<td>10</td>
<td>448,648</td>
<td>145,598</td>
<td>308 %</td>
</tr>
<tr>
<td>ケース 2</td>
<td>15</td>
<td>448,648</td>
<td>218,397</td>
<td>205 %</td>
</tr>
<tr>
<td>ケース 3</td>
<td>32.5</td>
<td>448,648</td>
<td>473,194</td>
<td>95 %</td>
</tr>
<tr>
<td>ケース 4</td>
<td>50</td>
<td>448,648</td>
<td>729,990</td>
<td>62 %</td>
</tr>
</tbody>
</table>

受益者数（2020年）：36,958人，給水原単位（都市部）：20L/日/人

検討の結果、1m³当たり30.8Biir以下では水料金を100％回収しても年間維持費をまかなえないことが判明した。一方、料金が50 Biir/m³の設定では62％以上の回収率で、維持管理費用を回収できる。一般に途上国において100％の回収を達成することは難しく、本調査で入手した給水事務所の財務データからも現状の回収率は60〜70％程度と推測され（9章“料金徴収”参照）、実現可能な値と考えられる。すなわち本プロジェクトは財務的妥当性を有していると言える。

一方、途上国での世帯の水道料金支払い能力は、国連によるこれまでの調査では3〜12％とされており、本ケースでは年間の収入の8%を仮定すれば、社会経済調査のデータから月額202 Biir/月程度の支払いが可能である。Godey市で平均6人世帯を仮定する場合、月の水使用量は約3.6m³であるため、50 Biir/m³の料金でも支払いが可能であること推測できる。この場合の回収率は62％であるので、回収率の向上により料金を低く設定することも可能である。
12. 結論
12 結論

フィージビリティスタディのための Godey 市の調査と解析結果に基づき結論を述べる。

12.1 結果の概要

Godey 市の地域特性は標高 273m～300m 程度でソマリ州の中央部からやや南方側のシェベレ川沿いに位置する、人口 29,379 人（2012 年）のシェベレ川沿いでは最も規模の大きな都市である。市内では河川から北に向かい標高が高じている。Godey 市周辺の地質は、既存の地質図によれば周辺には前期白亜紀～後期ジュラ紀の Korahe 石膏層(Kg)が広く分布し、その上位をシェベレ川流域等で崩積土、段丘礫層あるいは沖積層が覆う。

Godey 市周辺の年平均降水量は 236mm～272mm（観測期間 1966 年～2009 年）であり、Godey 郡周辺では一般的に小雨季が 4 月～6 月、10 月～12 月が本格的な雨季となる。

Godey 市周辺の表流水資源は、主にシェベレ川からの取水であり、Godey 郡では内陸部で Birka の利用も検討される。シェベレ川は恒常河川であり、Godey 水文観測所では流域面積 127,300km²、そのときの年間平均流出高（1968 年～1971 年）は 25.92mm であった。人口増加率は中央統計局の結果から 2.91%に設定し、2020 年の目標年次での水需要量を都市設計基準に沿った項目に関して求めた。計画給水量は総水需要量を採用した。既存の給水率は、取水ポンプ容量から求めた最大受益者数を人口で除した値から見ても約 26%の給水率でソマリ州の都市のアクセス率 74%と比較しても非常に低い。

Godey 市の水源は河川水であり、給水施設は 1959 年に建設され Godey 市の拡大に伴い 1996 年に拡張された。その後浄水処理の改善、配水槽の施設、公共水栓の新設設置が行われたが、現状では取水量 150m³/日に対する利用状況は 5,000 人程度である。河川水の水質は濁度と全硬度がエチオピア基準を超えている。課題としては不十分な給水量、河川水の高い濁度、配水管での不十分な水圧、給水区域の少なさ、及び公共水栓の活用の低さが挙げられる。

現状の施設の運営維持管理上の課題は、各施設を担当する職員は全体で 15 人程度であり、十分ではなく人員配置上の問題もある。また、事務等を担当する内勤のスタッフも、会計処理等を十分に出来ていないことが財務調査の過程で明らかになっている。

住民レベルの管理組織である WASHCO による市内の公共水栓の管理は、既述のように現在は Caretaker による管理が行われており、州の新しい方針である WASHCO による管理への移行に多少の問題を抱えているといえる。技術的な問題点は、市給水事務所の現在のスタッフは教育レベルが全体に低く、施設運営上の技術的な課題への対応が難しくなっている。水処理薬剤の投入などの作業も適切にやれていない。これらに加えて発電機等の機材も定期的なメンテナンスが行われておらず、故障の頻度が増すばかりか、故障時の対応も現状では難しいと考えられる。

環境社会配慮の IEE レベルの評価から建設中の社会環境、環境汚染に関する影響の軽微な可能性と供与中の雇用・生計等の地域経済に対する軽微な影響のモニタリングの必要性が掲示された。
12.2 結論

以上の結果を踏まえ、Godey 市の給水計画が立案され、その数値に基づく積算によっ
て概算事業費が算出された。また事業の実施計画や予算化のための検討もなされた。さ
らに運営維持管理の将来的な計画として研修計画の立案がなされ、また環境社会配慮で
は緩和策の提案も行った。

給水計画は、シェベレ川の河川水を水源とし取水地点は既存の自由アクセス地点より
も上流側とし河川侵食を防止するための河川保護工の検討も行っている。その他の施設
ではポンプ場計画は取水ポンプと送水ポンプを 1 箇所に設置する計画、給電計画は現時
点の不確実な電気供給計画でなく発電機の利用を検討した。浄水場は現状では電気使用
ができないことから発電機による 24 時間の計画とし、粗ろ過池に付随して速速ろ過池を
計画した。送水管は送水ポンプ場から開始し、総延長は 4,998m である。貯水槽の容量は
2020 年で 800m³ と算定した。既存の配水池は同じ地点に 3 基あり、地上式の 1 基（容量
1,000m³）と Godey 市現況で標高の高い地点に新設する 1 基（容量 400m³）を使用する計
画とした。前者は標高の低い地域への給水、後者は標高の高い地区への給水を目的とし
て配置する。つまり供給地域の給水範囲の境界を標高 293m で設定し、2 地区に配水する
計画である。配水管網は管径化した既存のものを更新し配水地域を拡張する。今回のパ
イロットプロジェクトで配置した公共水栓にもパイプを延長し接続する計画である。新
規貯水槽の水は 2 方向に配水する。一つは既存の配水池に対して送水することであり、
他の一つは市内の標高の高い地区に対して配水することである。給水範囲の境界を標高
293m で設定した。既存の配水池に貯水された水は、標高 293m 以下の地域に対して給水
する。

給水計画による施設の数量から、概算事業費を求めた。事業期間は 2015 年〜2018 年、
基準となる総事業費は 8,805,000USD（物価変動を考慮すると 9,934,000USD）である。

運営維持管理費用は、人件費のほかにいくつかの項目を検討しており、基準の総事業
費の 4.5%程度である。現状の運営維持管理能力は弱弱であり、それを補うための人員の
確保がなされ、同時にこれら職員や WASHCO メンバーに計画した研修を確実に実施する
ことで、プロジェクト成功の必要条件になる。すなわちこれらの条件をクリアすること
で運営・維持管理面からプロジェクトは実現可能と言える。

環境社会配慮では、深刻な影響は見つかないので、建設中の緩和策は、工事の規制等
を設けるなどを実施することが重要である。

Godey の経済評価は、給水計画が実施された場合の経済的便益を水汲み時間の削減便
益と健康改善便益で検討した。費用便益分析によって経済評価の指標を算定し、経済的
内部収益率（EIRR）は、大部分の給水計画で資本の機会費用である 10%を超えた結果と
なり経済的な妥当は有していると示された。

Godey 市の給水計画の事業費は、2020 年までの総計が、総額 880 万 5 千 USD となる。
事業費に対する予算化については、原則維持管理費用をコミュニティが負担すれば初期
事業費は政府（州）予算で対応する方針であるが、現状をあまりにかけ離れた状況では
ドナー等の援助を仰ぐことも視野に入れる必要がある。いずれにしても水料金の微減額
によって事業費を回収することは困難であるため、財務評価は実施しないが、m³ 当たり
10Birr, 15Birr では水料金を 100% 回収しても年間維持費をまかなえないことが判明した。なお、m³ 当たり 30.8Birr 以上の水料金徴収額 100% で年間維持管理費を上回る。さらに 50Birr/m³ の水料金の設定で 62% 以上回収することで、維持管理費用の回収という観点から、本プロジェクトは財務的妥当性を有している。途上国での世帯の水道料金支払い能力は、国連によるこれまでの調査では 3 〜 12% とされており、本ケースでは年間の収入の 8% を仮定すれば、社会経済調査のデータから月額 202 Birr/月程度の支払いが可能である。Godey 市で平均 6 人世帯を仮定する場合、月の水使用量は約 3.6m³ であるため、50Birr/m³ の料金でも支払いが可能であると推測できる。

12.3 主な今後の検討点

Godey 市のフィージビリティスタディを受けて給水計画に対して今後いくつかの点で検討が必要であり、以下に示す。

- 浄水場計画の中で通常は粗ろ過池のあとに緩速ろ過を計画するが、今回もそれに順ずる。通常、緩速ろ過池は、基本的に間欠運転が推奨されず、24 時間運転の元で計画されるべきものであるため、Godey 市においても 24 時間運転を計画している。しかしながら現段階での商用電力による運転は不確定であり、発電機による 24 時間の運転を計画しているので、緩速ろ過池の管理は十分に行う必要がある。また、必要となる緩速ろ過池の面積は、粗ろ過池と比較して広く、かつ緩速ろ過池の維持管理は手作業で行う必要がある。以上のように現段階では維持管理体制の確立が施設の運用に大きく影響するため、組織の強化を行う必要がある。それが行われないと施設の運用は困難である。

- 配水計画のうち、設計基準事例（Project design, financial and economic feasibility study, vol.1 tool kits and annexes, MoWE, 2003）にのっとって給水システムを各戸給水、ヤード給水及び公共水栓としているが、各戸やヤード給水は、基本的には幹線から分岐してパイプを使用するため、個人負担が原則である。費用面から個人利用が減少する可能性もあり、給水アクセス率の低下にもつながる可能性がある。いずれにしても、今後その原則は明確にして予算の分担等に関して水給水事務所等と協議する必要がある。