インドネシア国

インドネシア国
生活排水処理インフラ整備への
バイオアルシーユ導入案件化調査
業務完了報告書

平成29年4月
（2017年）

独立行政法人
国際協力機構（JICA）

日本アルシー株式会社
<table>
<thead>
<tr>
<th>左</th>
<th>右</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSDA 下水処理施設 (Malakasari)</td>
<td>嫌気槽の状況 (Malakasari)</td>
</tr>
<tr>
<td>曝気 / Bio Filter 処理の状況 (Malakasari)</td>
<td>汚泥引き抜き作業 (Malakasari)</td>
</tr>
<tr>
<td>PD Pal Jaya 下水処理設備管理の住宅</td>
<td>左記住宅向け下水処理設備 (200 ㎥/日)</td>
</tr>
<tr>
<td>PD Pal Jaya し尿処理設備</td>
<td>し尿運搬状況</td>
</tr>
</tbody>
</table>
案件化調査の様子（写真）

<table>
<thead>
<tr>
<th>左列</th>
<th>右列</th>
</tr>
</thead>
<tbody>
<tr>
<td>バイオアルシーのスペック説明 (Tanjug Priok, Jakarta)</td>
<td>設備にかかる質疑応答 (Tanjug Priok, Jakarta)</td>
</tr>
<tr>
<td>アルシー主要処理施設 (Tanjug Priok, Jakarta)</td>
<td>アルシーPH調整タンク (Tanjug Priok, Jakarta)</td>
</tr>
<tr>
<td>アルシー曝気槽 (Tanjug Priok, Jakarta)</td>
<td>アルシー主要処理タンク (Tanjug Priok, Jakarta)</td>
</tr>
</tbody>
</table>
目 次

案件化調査の様子（写真） .. 1
目次 .. 3
略語表 ... 5
図表リスト ... 7
本調査結果の要約 .. 9
はじめに ... 17

第1章 対象国・地域の現状 .. 22
 1－1. インドネシアの政治・社会経済状況 22
 1－2. ジャカルタの下水道整備における開発課題 25
 1－3. 開発計画、関連計画、政策及び法制度 27
 1－4. ODA 事業の先行事例分析及び他ドナーの分析 30
 1－5. ビジネス環境の分析 .. 31

第2章 製品・技術の特長及び海外展開の方針 33
 2－1. 製品・技術の特長 .. 33
 2－2. 期待される日本の地域経済への貢献 36

第3章 調査及び活用可能性の検討結果 37
 3－1. 製品・技術の現地適合性検証方法 37
 3－2. ジャカルタ下水道整備計画の現状 40
 3－3. 規制・基準の整備状況 .. 43
 3－4. 運用の実態とバイオアルシィーフの適合性分析 61
 3－5. バイオアルシィービ活用結果 63
 3－6. 参入可能エリアの検討 .. 68

第4章 ODA 案件にかかる具体的提案 77
 4－1. 現時点で想定する ODA 案件概要 77
 4－2. 想定する協力スキーム ... 80
 4－3. 他の ODA 案件との連携 .. 87
 4－4. ODA 推進に向けた合意形成 87
 4－5. ODA 案件形成における課題と対応策 88
 4－6. 環境社会配慮にかかる対応 89

第5章 ビジネス展開の具体的計画 91
 5－1. 市場動向の整理 .. 91
 5－2. 事業展開の方向性 ... 101
 5－3. 事業展開におけるリスクと対応策 105
Executive Summary ... 106
別添資料 ... 116
略語表

<table>
<thead>
<tr>
<th>略語</th>
<th>本名称</th>
<th>和文名称</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADB</td>
<td>Asian Development Bank</td>
<td>アジア開発銀行</td>
</tr>
<tr>
<td>AMDAL</td>
<td>Analisis Mengenai Dampak Lingkungan</td>
<td>環境影響分析</td>
</tr>
<tr>
<td>ASEAN</td>
<td>Association of South East Asia Nations</td>
<td>東南アジア諸国連合</td>
</tr>
<tr>
<td>BAPPENAS</td>
<td>Badan Perencanaan Pembangunan Nasional</td>
<td>インドネシア国家開発計画庁</td>
</tr>
<tr>
<td>BAST</td>
<td>Berita Acara Serah Terima</td>
<td>公式委譲文書</td>
</tr>
<tr>
<td>BKPM</td>
<td>Badan Koordinasi Penanaman Modal</td>
<td>インドネシア投資調整庁</td>
</tr>
<tr>
<td>BOD</td>
<td>Biochemical oxygen demand</td>
<td>生物化学的酸素要求量</td>
</tr>
<tr>
<td>BPPT</td>
<td>Badan Pengkajian dan Penerapan Teknologi</td>
<td>インドネシア技術評価応用庁</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical Oxygen Demand</td>
<td>化学的酸素要求量</td>
</tr>
<tr>
<td>DLH</td>
<td>Dinas Lingkungan Hidup</td>
<td>ジャカルタ環境管理委員会</td>
</tr>
<tr>
<td>BPLHD</td>
<td>(旧名称) Dinas Pengelolaan Lingkungan Hidup Daerah</td>
<td></td>
</tr>
<tr>
<td>DSDA</td>
<td>Dinas Sumber Daya Air</td>
<td>ジャカルタ特別州水管理局</td>
</tr>
<tr>
<td>DTA</td>
<td>(旧名称) Dinas Tata Air</td>
<td></td>
</tr>
<tr>
<td>DKI Jakarta</td>
<td>Daerah Khusus Ibukota Jakarta</td>
<td>ジャカルタ首都特別地区</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
<td>国内総生産</td>
</tr>
<tr>
<td>HGB</td>
<td>Hag Guna Bangunan</td>
<td>建設権</td>
</tr>
<tr>
<td>IATPI</td>
<td>Ikatan Ahli Teknik Penyehatan dan Teknik Lingkungan Indonesia</td>
<td>インドネシア衛生環境工学協会</td>
</tr>
<tr>
<td>ICETT</td>
<td>International Center for Environmental Technology Transfer</td>
<td>国際環境技術移転センター</td>
</tr>
<tr>
<td>IMB</td>
<td>Ijin Mendirikan Bangunan</td>
<td>建築許可</td>
</tr>
<tr>
<td>IMF</td>
<td>International Monetary Fund</td>
<td>国際通貨基金</td>
</tr>
<tr>
<td>INKINDO</td>
<td>National Association of Indonesian Consultants</td>
<td>インドネシアコンサルタント協会</td>
</tr>
<tr>
<td>IPAL</td>
<td>Instalasi Pengolahan Air Limbah</td>
<td>排水処理施設</td>
</tr>
<tr>
<td>ITSM</td>
<td>PT. Indofood Tsukishima Sukses Makmur</td>
<td>インドフード月島サクセスマクムール社</td>
</tr>
<tr>
<td>IUT</td>
<td>Ijin Usaha Tetap</td>
<td>恒久的業許許可</td>
</tr>
<tr>
<td>JETRO</td>
<td>Japan External Trade Organization</td>
<td>日本貿易振興機構</td>
</tr>
<tr>
<td>JICA</td>
<td>Japan International Cooperation Agency</td>
<td>国際協力機構</td>
</tr>
<tr>
<td>JV</td>
<td>Joint Venture</td>
<td>ジョイントベンチャー</td>
</tr>
<tr>
<td>KPPIP</td>
<td>Komite Percepatan Penyediaan Infrastruktur Prioritas</td>
<td>優先インフラ整備促進委員会</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
<td>Translation</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>KLH</td>
<td>Kementerian Lingkungan Hidup</td>
<td>環境省</td>
</tr>
<tr>
<td>MLSS</td>
<td>Mixed Liquor Suspended Solids</td>
<td>曝気槽内活性污泥量</td>
</tr>
<tr>
<td>MOM</td>
<td>Minutes of Meeting</td>
<td>議事録</td>
</tr>
<tr>
<td>MP</td>
<td>Master Plan</td>
<td>マスタープラン</td>
</tr>
<tr>
<td>MPA</td>
<td>Metropolitan Priority Area</td>
<td>ジャカルタ首都圏投資促進特別地域</td>
</tr>
<tr>
<td>MRT</td>
<td>Mass Rapid Transit</td>
<td>大量高速鉄道</td>
</tr>
<tr>
<td>NCICD</td>
<td>The National Capital Integrated Coastal Development</td>
<td>首都湾岸整備計画</td>
</tr>
<tr>
<td>ODA</td>
<td>Overseas Development Assistance</td>
<td>政府開発援助</td>
</tr>
<tr>
<td>PD Pal Jaya</td>
<td>Perusahaan Daerah Pal Jaya</td>
<td>ジャカルタ下水道公社</td>
</tr>
<tr>
<td>PET</td>
<td>Polyethylene Terephthalate</td>
<td>ポリエチレンテレフタレート</td>
</tr>
<tr>
<td>PPP</td>
<td>Public-Private Partnership</td>
<td>官民パートナーシップ</td>
</tr>
<tr>
<td>PTA</td>
<td>Purified Terephthalic Acid</td>
<td>高純度テレフタール酸</td>
</tr>
<tr>
<td>PUPR</td>
<td>Pekerjaan Umum dan Perumahan Rakyat</td>
<td>インドネシア公共事業・国民住宅省</td>
</tr>
<tr>
<td>PUSKIM</td>
<td>Pusat Penelitian dan Pengembangan Pemukiman</td>
<td>住宅居住開発研究センター</td>
</tr>
<tr>
<td>RPJMN</td>
<td>Rencana Pembangunan Jangka Menengah Nasional</td>
<td>中期国家開発計画</td>
</tr>
<tr>
<td>SANIMAS</td>
<td>Sanitasi Berbasis Masyarakat</td>
<td>嫌気式オンサイト処理施設</td>
</tr>
<tr>
<td>SNI</td>
<td>Standar Nasional Indonesia</td>
<td>インドネシア国家基準</td>
</tr>
<tr>
<td>SPPL</td>
<td>Surat Pernyataan Kesanggupan Pengelolaan dan Pemantauan Lingkungan Hidup</td>
<td>環境管理誓約書</td>
</tr>
<tr>
<td>STP</td>
<td>Sewerage Treatment Plant</td>
<td>下水処理場</td>
</tr>
<tr>
<td>TDP</td>
<td>Tanda Daftar Perusahaan</td>
<td>会社登録</td>
</tr>
<tr>
<td>TDS</td>
<td>Total Dissolved Solids</td>
<td>不純物総溶解度</td>
</tr>
<tr>
<td>TSS</td>
<td>Total Suspended Solids</td>
<td>総浮遊物質</td>
</tr>
<tr>
<td>UKL／UPL</td>
<td>Upaya Pengelolaan Lingkungan Hidup／Upaya Pemantauan Lingkungan Hidup</td>
<td>環境監視／管理方法</td>
</tr>
<tr>
<td>VAT</td>
<td>Value Added Tax</td>
<td>付加価値税</td>
</tr>
</tbody>
</table>
図表リスト

【表リスト】
表 1-1 インドネシアの主要指標推移 ... 22
表 1-2 インドネシア外国投資に関するネガティブリスト（当該部分抜粋） 31
表 3-1 対象市場イメージ .. 37
表 3-2 各活動の目的／活動内容／検証方法 .. 38
表 3-3 ジャカルタ特別州下水道整備マスタープラン（2012）の目標値 40
表 3-4 下水道整備目標値の達成に向けたスキーム .. 42
表 3-5 Zone 1、Zone 6 の現状 .. 42
表 3-6 規制対象となる排出源の例 .. 43
表 3-7 生活排水水質基準 ... 44
表 3-8 排水基準が定められている指定業種 .. 46
表 3-9 環境許可の違反により課される行政処分 .. 48
表 3-10 基準を超えた場合の刑罰 .. 49
表 3-11 ジャカルタ首都特別州における下水処理料金並びに下水道管接続料 ... 51
表 3-12 ジャカルタ特別州内 PD Pal Jaya による下水処理料金徴収の状況 52
表 3-13 ジャカルタ首都特別州のし尿・汚泥の回収料金と処理委託料金 53
表 3-14 排水処理設備製造認定の申請に当たって必要な書類の一覧 54
表 3-15 視察先バイオアルシの処理能力 .. 63
表 3-16 参入エリアの検討基準（市場全体として） .. 68
表 3-17 普及・実証事業のパイロットサイト検討に向けた追加基準..................... 70
表 3-18 Dinas Tata Air が管理運営している下水道処理サイト 70
表 3-19 PD Pal Jaya が管理運営している下水道処理サイト 72
表 3-20 DLH が 2015 年に実施したジャカルタ州河川水質調査結果 74
表 4-1 普及・実証事業における活動 .. 80
表 4-2 普及・実証事業における本邦受入研修スケジュール（案） 81
表 4-3 マラカサリ下水処理場にて導入予定のバイオアルシ 83
表 4-4 普及・実証事業活動スケジュール .. 85
表 4-5 普及・実証事業見積概算 ... 86
表 4-6 JICA 環境社会配慮チェックリスト ... 90
表 5-1 対象市場イメージ（再掲） .. 91
表 5-2 インドネシアにおける工業団地設立計画 ... 94
表 5-3 ジャカルタにおけるショッピングセンター建設予定 97
表 5-4 ジャカルタにおけるホテル建設予定 .. 99
表 5-5 バイオアルシ販売計画（販売対象別） ... 103
【図リスト】
図 1-1 インドネシアにおける一人当たり GDP 推移 23
図 1-2 国際収支推移 .. 23
図 1-3 外国投資許可額の推移 ... 24
図 2-1 バイオアルシーソの構造図 ... 34
図 3-1 適合性の検証に向けた本事業の調査フロー 38
図 3-2 NCICD ならびに JICA マスタープランレビューを踏まえた目標値 41
図 3-3 環境調和型技術のための性能認証の申請書 58
図 3-4 普及・実証事業における資産引渡しの流れ（バイオアルシーソの場合） ... 60
図 3-5 NCICD ならびに JICA マスタープランレビューを踏まえた目標値 69
図 3-6 ジャカルタ域内の河川及び 85 のモニタリングロケーション 73
図 4-1 マラカサリにおけるバイオアルシーソ建設構想図 79
図 4-2 普及・実証事業時の役割 ... 82
図 4-3 バイオアルシーソの設備機器イメージ .. 84
図 5-1 ジャカルタにおける工業用地の開発状況（2016 年末現在） 92
図 5-2 ジャカルタにおける業種別 工業用地利用状況（2016 年末現在） ... 93
図 5-3 ジャカルタにおける新規マンション建設数（部屋数） 95
図 5-4 ジャカルタにおける累積マンション数（部屋数） 95
図 5-5 ジャカルタにおける新規ショッピングセンター面積 96
図 5-6 ジャカルタにおける累積ショッピングセンター面積 96
図 5-7 ジャ卡尔タにおける新規ホテル件数 .. 98
図 5-8 ジャカルタにおける累積ホテル件数 .. 98
図 5-9 バイオアルシーソの事業推進体制 ... 102
本調査結果の要約

本案件化調査では、三重県に所在する日本アルシー株式会社の特殊な排水処理システムであるバイオアルシーをインドネシアで稼働させ、開発途上国の水質改善に貢献、更なる普及を実現するために、どのような準備や実証プロセスが必要になるかを調査することを目的としている。

本稿では案件化調査結果の要約として、概要について整理したい。

第1章 対象国・地域の現状

第1章では調査の背景や対象国の現状を整理した上で、開発課題について議論した。

＜調査の背景／対象国の現状＞

インドネシアは、ASEAN最大の人口と国土を有するASEANの中核国であり、同国の安定はASEANのみならずアジア全体の安定と繁栄に不可欠である。日本の対インドネシア共和国国別援助方針（2012年）では、「均衡のとれた更なる発展とアジア地域及び国際社会の課題への対応能力進上げのための支援」を重点分野としており、首都圏のインフラ整備を実施していく方針である。

インドネシアは下水道普及率が全国平均2%に留まっており、ASEAN周辺各国と比較して低位にある。首都圏であるジャカルタ特別州は急速な経済成長に伴い、人口増加や商業集積が顕著である一歩で、交通や上下水道等の都市基盤インフラの整備が遅れており、下水道普及率も4%程度に留まっている。河川等の公共用水域や地下水の水質汚染に起因する環境問題や住民の健康被害等の水環境問題が深刻化している。下水道処理施設を建設することによって水質汚染の原因を取り除くことができると考えられるため、下水道の普及と下水処理施設の整備が急務となっている。

こうした状況を受け、インドネシア政府は「中期国家開発計画」(RPJMN : 2015-2019)において、下水道をはじめとするインフラ整備の強化を示している。ジャカルタ特別州は、2020年に、2030年、2050年を短期、中期、長期の目標年次として15の下水処理区域を整備する計画を有しており、州中心部の第1处理区及びそれに隣接する第6处理区を優先対象としている。しかし、下水道整備計画から外れる予定の区域も存在しており、これら区域においては引き続き水質汚染が懸念される状況にある。

かかる状況のもと、日本アルシーはバイオアルシーを用いて、開発途上国の水質改善への貢献、普及に向けた準備や実証プロセスを明確化すること目的として本調査を実施した。

＜開発課題＞

上記の通り、ジャカルタ特別州は大都市でありながら、下水道普及率は低く、河川や海、地下水の水質は年々悪化している。このような事態を打開するための下水道・し尿処理設備ではあるものの、人口密集による用地確保の問題や管渠工事の困難さに直面している。ジャカルタが抱える社会経済開発上の課題として、次の5点が挙げられる。

1) 低いか下水道・し尿処理設備普及率
2) 下水道整備による、水質の悪化
3) 用地確保・管渠工事の困難状況
第２章　製品・技術の特長及び海外展開の方針
第２章では、日本アルシーニが提案するバイオアルシーニの技術的特長、ならびに、販売実績、日本の地域経済への貢献などを整理している。

＜製品・技術の特長＞
本内容の概要は以下の通り。

<table>
<thead>
<tr>
<th>名称</th>
<th>高効率微生物下水処理装置「バイオアルシーニ」</th>
</tr>
</thead>
<tbody>
<tr>
<td>スペック</td>
<td>「バイオアルシーニ」は嫌気槽・好気槽・沈殿槽一体型の円筒形・高効率微生物処理設備である。以下、基本スペック。</td>
</tr>
<tr>
<td>① 处理可能流入原水（BOD 10, 000mg/L、COD 10, 000mg/L）</td>
<td></td>
</tr>
<tr>
<td>② 处理効率・除去率（BOD 95～99%、COD 90～99%）</td>
<td></td>
</tr>
<tr>
<td>③ 表面積負荷（40〜70m3/m2・日）</td>
<td></td>
</tr>
<tr>
<td>④ 使用設備・機器（吸上げポンプ、ブロワー、攪拌機、スクリーン遠心脱水機）</td>
<td></td>
</tr>
<tr>
<td>⑤ 運転管理方法（遠隔監視システム、無人自動運転）</td>
<td></td>
</tr>
<tr>
<td>特長</td>
<td>① 処理能力が高く、余剰汚泥発生がほとんど発生しない。</td>
</tr>
<tr>
<td></td>
<td>② 負荷・水量の変動に強く、処理性能の安定性が高い。</td>
</tr>
<tr>
<td></td>
<td>③ 省スペースで汚気が発生せず、設置場所の選択が容易。</td>
</tr>
<tr>
<td></td>
<td>④ 建設物、必要機器が少なく建設費用が安価。</td>
</tr>
<tr>
<td></td>
<td>⑤ 藤森や余剰汚泥処理費が不要、かつ省電力で運転費が安価。</td>
</tr>
<tr>
<td></td>
<td>⑥ 遠隔監視システム（無人自動運転）により運転管理が容易。</td>
</tr>
<tr>
<td></td>
<td>⑦ 洽用性のある機器のみ使用しており、維持管理が容易。</td>
</tr>
<tr>
<td>国内外の販売実績</td>
<td>① 国内販売実績</td>
</tr>
<tr>
<td></td>
<td>・設備投資型：11社18基 総額1,172百万円（H2〜H28）</td>
</tr>
<tr>
<td></td>
<td>・設備リース型：7社8基 リース代350〜1,400千円/月（10年契約）</td>
</tr>
<tr>
<td></td>
<td>② 海外販売実績（設備投資型）</td>
</tr>
<tr>
<td></td>
<td>・5社6基 総額280百万円（タイ、台湾、インドネシア、マレーシア）</td>
</tr>
<tr>
<td>競合他社製品と比べた比較優位</td>
<td>「バイオアルシーニ」は、上述のスペックに記載した特殊構造を持つ微生物処理設備であり、現時点で代替品は存在しないと認識している。</td>
</tr>
<tr>
<td></td>
<td>国内外で特許も取得しており、模倣可能性は低い。「バイオアルシーニ」は、生活排水処理の一般技術である標準活性汚泥法より、少ない費用でより高度な処理ができる。</td>
</tr>
<tr>
<td>価格</td>
<td>1式当たりの想定販売価格：約2億円</td>
</tr>
<tr>
<td></td>
<td>基礎工事、機材・機器の最大限の現地調達によりコストダウンを想定。</td>
</tr>
</tbody>
</table>
＜期待される日本の地域経済への貢献＞
本製品が普及することにより、日本の地域経済には以下の２点において貢献ができるものと考えている。
１）部品産業への貢献
本製品のコアとなる部品の一部（電動機、撹拌機、電気計装設備、測定器、センサー、そして耐久性のあるプロワーやポンプなど）は現地調達が難しく、日本で調達することとなる。そのため、日本国内における地域の関連製造業の業績拡大・雇用創出に繋がる見込みである。
２）その他 ASEAN への貢献
下水処理にかかる課題（費用徴収制度の未整備、十分な予算の未確保、安全基準を満たさない汚水の排出など）はインドネシアのみならず、他の新興国においても同様と考えられる。本製品の展開はインドネシアに限らず他の ASEAN 地域での生活排水や工場排水の環境問題の解決にも寄与し、さらなる地域経済の活性化に貢献可能である。

第３章 調査及び活用可能性の検討結果
第３章では、本調査の結果としてジャカルタ下水道整備計画の現状、基準・規制の実態、バイオアルシーオの適合性などを分析した。さらに現地視察結果を踏まえ、カウンターパート候補の理解促進に努め、候補地の選定について議論を進めている。

＜ジャカルタ下水道整備計画の現状＞
JICA の支援によって作成された、ジャカルタ特別州下水道整備マスタープラン（2012）から、首都湾岸整備計画（NCICD: The National Capital Integrated Coastal Development）の推進により、下水道計画も変更されている。NCICD は港湾整備だけでなく、湾岸地域におけるスポーツ施設、工業団地などの建設も含まれており、その整備推進に伴い下水道の整備も盛り込まれている。この計画では、2022 年までに 75％の下水道整備を目標値として設定されていることから、JICA マスタープランでの見直しと合わせて、PD Pal Jaya での検討も進められた。現状では目標とする 75％のうち、65％をオフサイトにて、10％をオフサイトにて整備する計画となっている。

＜規制・基準の整備状況＞
排水基準は「生活排水の水質基準に関する環境省令大判令 2016 年第 68 号（施行日 2016年 9 月 2 日（公布日と同じ））にて規定されている。各家庭より排出される一般生活排水は、中央政府、もしくは地方政府が適切な下水処理設備を提供、運用し、処理するとしていることが分かった。
また、行政処分と罰則規定は「環境省令大判令 2016 年第 68 号、並びに、環境省令大判令 2014年第 5 号）には行政処分並びに罰則規定に関する記述はないが、これらの上位法にあたる「環境保護と管理に関する法律 2009 年第 32 号」では、行政処分ならびに罰則規定が記述されていることが分かっている。
下水・し尿処理に関連する料金徴収制度に関し、下水道公社である PD Pal Jaya は行政組織あるいは民間事業者から委託を受けて生活排水処理設備の運転・管理を行い、「ジャカ
ルタ州知事令 2012 年第 991 号」に基づき、下水処理料金と公共の下水道管への接続料を徴収している。

公共事業として建設される下水処理場に導入される設備の技術は、「排水処理設備製造認定」を取得したものでなくてはならない。公共事業国民住宅省住宅研究開発センター（Pusat Penelitian dan Pengembangan Pemukiman（PUSKIM））にて認証を行っている。

その他、インドネシア国内における環境配慮型技術の普及促進や技術革新、並びに、技術保有者と技術利用者の橋渡しを支援することを目的として環境調和型技術のための性能認証制度が存在することも確認している。

＜運用の実態とバイオアルシド法の適合性分析＞

本調査を通し、運用の実態として「技術者が不在でありメンテナンスが適切に行われていないこと」「下水道料金の徴収に関する法整備が不十分であり、PD Pal Jaya における徴収に困っていること」「環境大臣令 2016 年第 68 号で見直された排水基準であるものの、未だ先進国並みではないこと」が分かった。

いずれもバイオアルシドの特長である①狭い敷地でも大きな処理能力を有し、②前処理関連費用が削減できること、③余剰汚泥の発生抑制により設備関連費・人件費が抑制できること、④水量変動や負荷変動に強い安定的な処理能力を有することはジャカルタ特別州における下水処理の実態に適合することが分かった。

＜バイオアルシドの視察結果＞

調査により明確になってきたインドネシアにおける下水処理の実態に対し、バイオアルシドの活用可能性について理解を促進するため、インドネシア側関係者を対象としたバイオアルシドの視察を 2 回実施した。これにより、関係者のバイオアルシドの特長、視察までに提案していた実証設備案に対する理解を深めるとともに、普及・実証事業の共同実施への意欲を高めることができた。

＜参入可能エリアの検討＞

普及・実証事業における参入エリアの検討にあたり、①ジャカルタ下水道計画における集中処理の対象外となる地域であること、②管渠・バクテリームーカーなどにて処理設備へ接続可能であること、③新規装置・既存設備への増設が可能なこと、④高圧化パートからの推奨、選定基準として検討を行った。その結果、上記条件を満たす先として、DSDA より紹介を受けた Malakasari 下水処理場を普及・実証の予定地として選定した。

第 4 章 ODA にかかる具体的提案

これまでの検討を踏まえ、第 4 章では、ODA スキームとして普及・実証事業の概要について議論している。

普及・実証事業推進に向けて、調査団ではカウンターパートとなる DSDA と密な議論を進め、詳細の進め方について詰めを行った。候補地である Malakasari 下水処理場については、その見取り図を元に、バイオアルシド設計計画を作成した。DSDA より、当該地は DSDA 所有・運営・管理する土地であるため、無償貸与は可能であること、また、必要な電力や人件費については法律に鑑み、資産譲渡後に予算確保に尽力する旨の言質を得ている。
方、DSDA 内での予算確保に向けた調整をスムーズに実施するため、JICA／PUPR 間で調整が行われる MoM 内に盛り込んで欲しいとの依頼があった。

また、普及に向けては各関係省庁における連携が必須であることから、先述の通り、バイオアルシーザーの普及・実証事業が実現した場合の実施体制として普及促進委員会の設置を検討している。KPPIP や INKINDO、IATPI など各関係者などより、普及促進委員会への参加と情報交換について、口頭ベースで合意をいただいている。

普及・実証事業の概要

<table>
<thead>
<tr>
<th>1. 対象国／対象地域</th>
<th>インドネシア／ジャカルタ特別州</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. 対象分野</td>
<td>③水の浄化・水処理</td>
</tr>
<tr>
<td>3. 事業の背景</td>
<td>JICA「ジャカルタ特別州下水道整備事業」の事前評価時にも検討されている通り、インドネシアにおける下水道普及率は全国で約 2.0%と他の東南アジア諸国と比較しても低水準である（マレーシア：31.8%、タイ：28.1%、フィリピン：4.1%、ベトナム：1.8%）。かつ、上記の通り、人口増加、急速な経済成長に伴い、ジャカルタ首都圏における経済集積は進んでいるものの、上下水道含めた都市基盤の整備は未だ脆弱な状況となっている。本案件化調査により、ジャカルタ下水道整備が抱える開発課題として、以下のような問題が浮き彫りとなっている。1）低い下水道・し尿処理設備普及率2）下水道未整備による、水質の悪化3）用地確保・管渠工事の困窮状況4）建設費の高さによる下水道処理業労働雇用延の可能性5）下水道費用徴収制度の不備に伴う運営経営の困難さそこで本事業では、「バイオアルシーザーを分散処理の恒久設備としての有効性（先進国並みの排水基準をクリア可能）を実証し、インドネシアの下水道ならびに生活の質向上に受けた普及の在り方を模索する」ことを目的として事業を推進する。</td>
</tr>
<tr>
<td>4. 提案製品・技術の概要</td>
<td>「バイオアルシーザー」は嫌気槽・好気槽・沈殿槽一体型の円筒形・高効率微生物排水処理設備であり、以下の特性を有する。1）処理能力が高く、余剰汚泥発生がほとんど発生しない2）負荷・水量の変動に強く、処理性能の安定性が高い3）省スペースで臭気が発生せず、設置場所の選択の幅が広い4）建設コスト、必要機器が少なく建設費用が安価5）薬剂剤薬剤の余剰汚泥処理費が不要、かつ省電力で運転費が安価6）遠隔監視システム（無人自動運転）により運転管理が容易7）汎用性のある機器のみ使用しており、維持管理が容易</td>
</tr>
<tr>
<td>5. 事業概要・期待される成果</td>
<td>本事業では3つの開発課題解決に向け、4つの成果に結び付けたいと考えている。</td>
</tr>
<tr>
<td>6. 対象国政府関係機関 (カウンターパート機関)</td>
<td>ジャカルタ特別州水管理局（DSDA: Dinas Sumber Daya Air）※ PUPR(公共事業・国民住宅省)、BAPPEDA(ジャカルタ開発計画当局)などインドネシアの各関係機関とも連携</td>
</tr>
<tr>
<td>7. 受益者層 (ターゲットグループ)</td>
<td>下水道処理設備という特性上、富裕層〜低所得層までいずれの地域住民の受益者となる。なお、本普及・実証調査事業で実施するMalakasari下水処理場(ジャカルタ)は周辺500世帯を対象とする下水処理場であり、中〜低所得層が居住する地域である。</td>
</tr>
<tr>
<td>8. 実施予定期間</td>
<td>2017年9月〜2020年8月（3年0ヶ月）</td>
</tr>
<tr>
<td>9. 事業費概算額</td>
<td>149,976千円</td>
</tr>
<tr>
<td>10. 事業の実施体制</td>
<td>事業推進にあたり、1）バイオアルシーの有効性の検証、2）普及に向けた方針検討の両方が達成できることが肝要。そのため、関係者による推進委員会の設置、ワークショップ開催により普及に向けた検討が可能な体制を構築する。また、案件化調査時の参画メンバーの継続して実施することで、関係者との更なる関係構築を図っていく。</td>
</tr>
</tbody>
</table>

第5章 ビジネス展開の具体的計画

第5章では、市場動向を整理した上で、事業展開の方向性について分析・検討を行っており、そのリスクと対策について整理を行った。

＜市場動向の整理＞

ビジネス展開においては、官需・民需の両面より推進していくことを想定している。
1) 官需への展開
官需においては、集中処理で賃うことが難しい市町村（バイオアルシーノの効果が最も期待できる5〜10万人規模。セプティックタンクでは処理が間に合わない中規模の下水処理設備として効果を発揮）で推進する予定。

2) 民需への展開
民需においては大型の下水処理設備が必要とされる工場、事業所、集合住宅、ホテルなどを主な対象として考えている。案件化調査における各インタビューより、省スペース、省エネ（電気代）、省コスト（人件費、薬品代など）には高い関心を示していたことから、各業種における新規工場・施設建設を狙い、アプローチを強化することで普及促進に努める。

＜事業展開の方向性＞
ビジネス展開の大きな流れは以下の通り。官需・民需の両面から普及促進を図り、開発課題の解決に寄与していく。
① 普及・実証調査により官需・民需における普及のあり方を明確化
② ジャカルタ生活排水インフラにおける実績の積み重ね
③ 工場排水・商業排水・民間集団住宅などにおける生活排水処理への拡販
④ 事業拡大に伴う製造原価・販売経費の削減
⑤ ジャカルタ特別州以外への国内普及拡大に向けた関係者との連携強化
⑥ インドネシア国内への水平展開

＜事業展開におけるリスクと対応策＞
事業展開に向けたリスクとなりうるポイントは以下の2つと考えている。
1) 模倣リスク・流出リスク
バイオアルシーフ法は特許製品であり、事業展開において日本アルシーフとして最も懸念するリスクは模倣リスク、技術の流出リスクである。バイオアルシーフの技術は長年に亘る積み重ねにより日本アルシーフが蓄積してきた技術であるため、模倣リスクは小さいと考えられる。しかしながら、事業の趣旨に鑑み、インフラ整備にかかる技術に関しては部分的に開発し、バイオアルシーフ法を利用した分散処理の普及に努めたい。そのため、技術の流出に関しては大きなリスクとなりうる。対策の一つとして、複数社と協力関係を結ぶような業務提携ではなく、特定の現地企業と限定的に協力関係を結ぶため、合弁企業の設立を進めている。
2) カントリーリスク
インドネシアにおいては規制の変更、政治の混乱、為替変動など様々なカントリーリスクを負うこととなる。安定した収益基盤を確保し、下水道整備に向けて貢献していくため、常に現地情報にアンテナを張るだけでなく、官民合わせて多様な顧客層に展開することでリスクを分散させたいと考える。
案件化調査
インドネシア国 生活排水処理インフラ整備へのバイオアルシー導入案件化調査

企業・サイト概要
■ 案 件 企 業：日本アルシー株式会社
■ 提案企業所在地：三重県三重郡菰野町
■ サイト・C/P機関：ジャカルタ首都圏 / DSDA

インドネシア国の開発課題
- 低下的水道・し尿処理設備普及率
- 深刻な地下水・河川の水質悪化
- 人口密度による困難な用地確保
- 困難な財源確保、下水道費用徴収制度不備

中小企業の技術・製品
- 微生物を高効率で培養する污泥減容化微生物処理システム
- 狭い敷地に建設可能、安価な建設コスト
- 前処理関連費用、余剰汚泥処理備品・設備・人件費の大幅な削減可能
- 水量変動や負荷変動に強い安定的な処理能力

調査を通じて提案されているODA事業及び期待される効果
- 案件化調査完了後、「普及・実証事業」案件を提案。バイオアルシーの連続稼働を通じた実証総合を行い、その効果を定量的に示し、その後のインドネシア国内の展開への道筋をつける。
- バイオアルシーの設置により排水処理の分散化を進め、既存下水処理施設の負荷を軽減し、環境影響の低減を図る。
- 下水道整備事業区域外の排水処理機能を底上げし、区域外住民の生活の質を改善する。

日本の中小企業のビジネス展開
- 公的需要の取り込み：インドネシア政府・JICAと協議の上、一般住宅地域等における生活排水処理・し尿処理への対応
- 民間需要の取り込み：工業団地や工場における工業排水処理への対応、商業施設・民集合住宅における生活排水処理・し尿処理への対応
はじめに

【調査名】
インドネシア国生活排水処理インフラ整備へのバイオアルシード入案件化調査
Indonesia, “Feasibility Survey for an application of microbial treatment equipment ‘BIOALSI’ to sewage treatment and excreta disposal”

【調査の背景】
インドネシアは、ASEAN最大の人口と国土を有するASEANの中核国であり、同国の安定はASEANのみならずアジア全体の安定と繁栄に不可欠である。日本の対インドネシア共和国国別援助方針（2012年）では、「均衡のとれた更なる発展とアジア地域及び国際社会の課題への対応力向上のための支援」を重点分野としており、首都圏のインフラ整備を実施していく方針である。
インドネシアは下水道普及率が全国平均2%に留まっており、ASEAN周辺各国と比較して低位にある。首都圏であるジャカルタ特別州は急速な経済成長に伴い、人口増加や商業集積が顕著である一方で、交通や上下水道等の都市基盤インフラの整備が遅れており、下水道普及率も4%程度に留まっている。河川等の公共用水域や地下水の水質汚染に起因する環境問題や住民の健康被害等の水環境問題が深刻化している。下水道処理施設を建設することによって水質汚染の原因を取り除くことができると考えられるため、下水道の普及と下水処理施設の整備が急務となっている。
こうした状況を受け、インドネシア政府は「中期国家開発計画」（RPJMN：2015-2019）において、下水道をはじめとするインフラ整備の強化を示している。ジャカルタ特別州は、2020年、2030年、2050年を短期、中期、長期の目標年次として15の下水処理区域を整備する計画を有しており、州中心部の第1処理区及びそれに隣接する第6処理区を優先対象としている。しかし、下水道整備計画から外れる予定の区域も存在しており、これら区域においては引き続き水質汚染が懸念される状況にある。
かかる状況のもと、日本は2012年10月にインドネシア両政府間で「ジャカルタ首都圏投資促進特別地域（MPA）」マスタープランを承認し、特に第1処理区を対象とする「ジャカルタ特別州下水道整備事業」に係る協力を展開している。
日本アルシー株式会社の製品であるバイオアルシードは、嫌気処理及び好気処理を一槽で行うことで活性汚泥を循環させ、分解するため汚泥が発生が少ない下水処理方法である。高濃度処理が可能なため、人口密集地域での排水処理に適しており、ジャカルタ特別州の下水道整備事業から外れる区域において本製品の導入をすることで、水環境保全に貢献するものである。
【調査の目的】
提案製品の開発課題の解決のための活用可能性を確認し、以下の ODA 案件提案、ビジネスモデル立案を目的として調査を実施する。

1）想定する ODA 案件化
公共事業省及びジャカルタ特別州等をカウンターパートとし、バイオアルシーチの性能実地試験及び普及活動を実施する普及・実証事業を検討する。

2）想定するビジネスモデル
公的機関に対しバイオアルシーチを販売することを検討しているため、関係する公共調達制度を調査し、調達条件に合致する仕様を確認する。民間事業者に対しては、工場、商業施設、集合住宅へのバイオアルシーチの導入を検討する。

【団員リスト】

<table>
<thead>
<tr>
<th>No</th>
<th>従事者名（居住地）</th>
<th>所属先</th>
<th>担当業務</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>藤野 清治（四日市・日本）</td>
<td>日本アルシーチ株式会社</td>
<td>業務主任者／業務統括</td>
</tr>
<tr>
<td>2</td>
<td>藤野 芳雄（名古屋・日本）</td>
<td>日本アルシーチ株式会社</td>
<td>業務担当／業務調整</td>
</tr>
<tr>
<td>3</td>
<td>黒田 直子（四日市・日本）</td>
<td>国際環境技術移転センター</td>
<td>アドバイザー／規制整理・業者選定フロー確認・費用徴収プロセス確認</td>
</tr>
<tr>
<td>4</td>
<td>Ir.Setyo Duhkito（Jakarta）</td>
<td>PT. Antar Benua Sukses Mandiri</td>
<td>アドバイザー／参入可能エリアの選定・優先度検討</td>
</tr>
<tr>
<td>5</td>
<td>Pulung Bimasakti（Jakarta）</td>
<td>PT. Aiko Indonesia</td>
<td>アドバイザー／水質調査支援</td>
</tr>
<tr>
<td>6</td>
<td>Dr.Abdul Rahman（Jakarta）</td>
<td>PT.MU Research and Consulting Indonesia</td>
<td>コンサルタント／チーフアドバイザー／プロジェクトマネジメント・官公庁ネットワーク構築、官需要調査</td>
</tr>
<tr>
<td>7</td>
<td>中島 猛（Jakarta）</td>
<td>PT.MU Research and Consulting Indonesia</td>
<td>コンサルタント／関連規制・業者選定フロー・費用徴収プロセス調査支援、官民ビジネスモデル検討、官公庁・関係者との認識摂合、報告書作成支援、精算業務支援</td>
</tr>
<tr>
<td>8</td>
<td>中島 真理子（Jakarta）</td>
<td>PT.MU Research and Consulting Indonesia</td>
<td>コンサルタント／民を対象とした業界動向調査、関連規制・業者選定フロー・費用徴収プロセス調査支援、民ビジネスモデル検討、報告書作成支援</td>
</tr>
</tbody>
</table>
現地調査工程

<table>
<thead>
<tr>
<th>No</th>
<th>訪問期間</th>
<th>訪問先</th>
<th>調査内容</th>
</tr>
</thead>
</table>
| 1 | 2016年9/15～22 | ● 公共事業・国民住宅省(PUPR)人間居住総局
● PD PAL JAYA (現場観察含む)
● Dinas Tata Air DKI
● IATPI (Ikatan Ahli Teknik Penyehatan dan Teknik Lingkungan Indonesia)
● Ministry of Environment and Forestry (General Directorate of Environment Damage and Pollution Control)
● JICA インドネシア事務所 | ● ジャカルタにおける下水道設備はラグーン式。公共事業省にてプロトタイプを作成し、水平展開させた結果。初期投資・ライニングコストが低く効果的との理由からであるが、Kuninganのラグーン式、Malakasariの活性汚泥法も設置後は放置されたままになっているのが実態。
● Dinas Tata Airより複数の下水道設備の中からMalakasariでの普及・実証の提案があった。土地もDinas Tata Airが所有し、予算確保も目途が立つ可能性が高い。また、管渠・嫌気槽の汚泥除去作業を実施するため、管理体制まで整えたバイロットプロジェクトになりうるため。
● 下水の排水基準に関し、国としての放流基準は不明（水上再利用時の基準は存在）。DKIではホテル・モールからの排水基準は環境大臣令2014年第5号にて規定されている。詳細はKLI（内務署管理総局にて対応）
● 普及実証調査完了後の議論と関し、インドネシア政府内の手続きが煩雑。無償供与は直接地方政府に渡していけないとの規制があり、中央政府→財務省承認→地方政府を通すため、時間がかかる。予め、中央政府とも調整しておくことが肝要。（JICAインドネシア事務所） |
| 2 | 2016年11/16～22 | ● 公共事業・国民住宅省(PUPR)人間居住総局
● PD PAL JAYA (現場観察含む)
● Dinas Tata Air DKI
● KPPIP (Committee for Acceleration of Priority Infrastructure Delivery)
● PUSKIM (Pusat Penelitian dan | ● 現在推進しているDKI下水道整備事業はZone1、Zone6を中心に進められており、基本設計の段取りが進みつつある状況。
● JICA主導による下水道処理マスタープランは2015年に改定。それに伴い、KPPIPでは中央処理/分散処理の適応地域、手法などを整理している段階。12月下旬を目途に報告書としてまとめの予定。（情報は公開される）
● Dinas Tata Air、PD Pal Jayaにて更なる議論を進めた。
● Dinas Tata Airでは、Malakasari下水処理施設を普及・実証時の候補地として推薦頂き、土地・水道光熱費の利用も可との言質をMr.Eko (Maintenance Section Head)より得た。一方、詳細を進めるため、書面をベースに議論を重ねたい由の要望があった。
● PD Pal Jayaからは詳細スペックを踏まえた意見交換により、具体的的候補地を提示していきたい旨の言質を得た。 |
| 3 | 2016年12/11〜18 | ● PD PAL JAYA
● Dinas Tata Air DKI
● BPLHD
● JICA インドネシア事務所 |
|---|---|---|
| 4 | 2017年1/22〜28 | ● DSDA（旧 Dinas Tata Air）
● ITSM（Indofood工場での現地視察）
● PD PAL JAYA
● BPLHD
● INKINDO
● 各民間企業
● JICA インドネシア事務所 |
| | | 調査団より、必要なスペック情報の提供を実施する。
| | | ● JICA インドネシア事務所からのアドバイスを踏まえ、公共事業省を訪問。案件化調査においても JICA との正式な契約が必要との指摘があった。再度、JICA インドネシア事務所と相談の上、正式なレターを基に Dinas Tata Air、PD Pal Jaya と協議を行い、スキームを固めた上で公共事業省へ話を通す流れを取ることとなった。
| | | ● JICA インドネシア事務所のアドバイスを基に、公共事業省に案件化調査にかかる打合せへの協力依頼を行った。その後で、Dinas Tata Air と今後の進め方について協議を実施した。
| | | ● Dinas Tata Air では、普及実証時におけるパイロットサイトとして Malakasari を選定する意向であること、また、Dinas Tata Air をカウンターパートとして普及・実証事業に進みたい意向であることを伝えた。
| | | ● Dinas Tata Air からは正式なレターの提示に対する謝意を頂くと共に、更なる詳細な意見交換を進めるため、これまでの議論内容をドキュメント化し、お互いの認識を深めたいとの依頼があった。
| | | ● 普及・実証事業における実施場所を Dinas Tata Air が管轄する Malakasari としたことを受け、PD Pal Jaya にその報告を行うと共に、民間ベースでの協業の在り方にについて協議を行った。
| | | ● 排水基準にかかる正確な情報、ならびに、各排水処理設備における利用技術・結果などの情報を収集するため、BPLHD と協議を行った。
| | | 本ミッションでは以下の3点を目的として実施した。
| | | ① DSDA と普及・実証事業での役割分担、進め方についての確認
| | | ② バイオアルシープの実態をより把握して頂くため、DSDA キーマンの現地視察
| | | ③ 各民間企業へのインタビューならびに民需確認
| | | ● DSDA では Malakasari におけるバイオアルシープの設備図面、役割分担図、DSDA にて負担をお願いした費用概算などに関する協議を行った。
| | | ● 現地視察は残念ながらキーマンが急用により参加することとはできなくなったものの、後述する通り、現地視察先の企業担当者よりバイオアルシープの実態を説明頂き、理解促進に繋げることができた。
| | | ● 民間需要の確認のため、工業団地、一般企業、商業施設、
| 5 | 2017年2月19～24 | DSDA（旧Dinas Tata Air）
ITSM（Indofood工場での現地視察）
公共事業省
BPLHD
各民間企業
JICAインドネシア事務所 | 住宅・マンションを運営している事業者に現行の排水処理の実態と、バイオアルシーソの可能性についてヒアリングを行った。
最終ミッションとなる本ミッションでは、以下を目的として実施した。
① 前回訪問できなかったDSDAキーマンの現地視察
② 上記実施の上で、DSDAと普及・実証における役割分担の詳細確認
③ 公共事業省ならびに関係者への普及・実証事業推進時の普及推進委員会への参加依頼
DSDAのキーマンにバイオアルシーソを視察頂くことができたことでバイオアルシーソのメリットを十分に理解頂くことができた。また、JICAインドネシア事務所職員と共に、普及・実証事業推進時のスレップについて改めて協議を進め、実際のアクションプランについて協議を進め、その結果、普及・実証として是非一緒に進めていきたいとの言質を得ることができた。
また、公共事業省においても、JICAインドネシア事務所職員も打合せに参加。現状の報告ならびに普及・実証への流れについて議論を行った。普及・実証事業へ推進時には普及実証委員会を設置し、各関係者への知見と設備の普及を進めるべきの当方の提案に対し、協力頂けるとの言質を得た。 |
第1章 対象国・地域の現状

1-1. インドネシアの政治・社会経済状況

近年のインドネシア政府は、1960年代半ばより続いたスハルト大統領の独裁体制を脱し、民主主義が定着したいといえる。1998年のジャカルタ暴動や2002年以降発生した複数のテロ事件（バリ島、ジャカルタ、中部ジャワ等）、2004年のスマトラ島沖地震と大津波など、様々な困難に直面したが、スハルト政権時代には禁止されていた結社や論説の自由、華人文化令等は解禁され、民族・社会の融和が促された。一方、中央集権的であった政治システム、地方分権化が進め、中央のコントロールが利かなくなり、汚職の多発といった新たな問題にも直面した。そして、2004年に初の大統領直接選挙でスシオ・バンバン・ユドヨノ大統領が選出され、2期、合計10年の任期を経て、テロ対策、汚職対策、経済成長の実現化など、様々な政治・経済・社会安定化政策を実施した。2014年には3回目の大統領直接選挙が実施され、軍や政党バックグラウンドを持たない庶民派のジョコ・ウィド大統領が選出されている。就任当時、与党の国会議席数は半数に満たず、確固たる政策の実現が危ぶまれたものの、就任2年目までに過半数を制し、二回にわたる内閣改造を経て、様々なインフラプロジェクトや福祉政策を推進している。同大統領は、多くの経済政策パッケージ打ち出し（2016年12月初頭時点までで、第14弾のパッケージが発表されている）、さらなる経済成長の安定化と促進を図っている。政権運営を担って以来、高い支持率を誇しており、次期大統領選挙（2019年）までは、このまま安定的な政策が取られるものと推測される。

昨今のインドネシア経済はGDPの5割以上を占める民間消費の順調な伸びに支えられ、2010年より6%台の経済成長率（GDP）を3年間達成している。2013年より5%台に移行し、2015年は政府の当初目標の5.8%を下回り、4.7%の経済成長率となった。この背景には、世界的な景気低迷と、2012年から続く資源価格下落、また、インドネシアの主要輸出品であるコモディティー商品の価格下落が響いたことによる、輸出入の不振が挙げられる。政府は税制改正を通じ、タックスアムネスティなど新たな財源を得る事で2016年の成長率政府目標を5.3%に設定しているが、国際機関の見通しは4.9%（IMF）から5.2%（ADB）の予測に留まっている。また、国民一人あたりのGDPで見ると2010年に3,000を突破し、それ以降、常に3,000ラインを超えている状況にある。2013年よりインドネシア・ルピアの対ドル・レートが下がり続けているため、横ばい、または若干の減少傾向も見せているが、中間層の消費需要の拡大が期待されている。

表 1-1 インドネシアの主要指標推移

<table>
<thead>
<tr>
<th>指標</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>一人当たりGDP (US$)</td>
<td>3,178.1</td>
<td>3,688.5</td>
<td>3,744.5</td>
<td>3,675.6</td>
<td>3,531.8</td>
<td>3,362.4</td>
</tr>
<tr>
<td>GDP成長率（年率%）</td>
<td>6.1</td>
<td>6.5</td>
<td>6.2</td>
<td>5.8</td>
<td>5.1</td>
<td>4.7</td>
</tr>
<tr>
<td>為替レート（年平均，Rp/USD）</td>
<td>9,090</td>
<td>8,770</td>
<td>9,387</td>
<td>10,461</td>
<td>11,865</td>
<td>13,389</td>
</tr>
<tr>
<td>インフレ率（年平均，消費者物価）byインドネシア統計局</td>
<td>7.0</td>
<td>3.8</td>
<td>4.3</td>
<td>8.4</td>
<td>8.4</td>
<td>3.4</td>
</tr>
<tr>
<td>インフレ率（年平均，消費者物価）byIMF</td>
<td>5.1</td>
<td>5.3</td>
<td>4.0</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
</tr>
</tbody>
</table>

出所）国際通貨基金、インドネシア中央銀行

22
一人当たりGDP（US$）

天然資源に恵まれたインドネシアは従来、資源輸出収入によって貿易収支の黒字を維持してきたが、2012年以降が3年間、石油など動植物資源への国際価格の低迷により輸出収入は伸び悩む一方、資本流入および消費者増大の拡大傾向が続いたため、貿易収支は赤字を計上していた。2015年は輸出とともに前年比マイナス成長であったが、輸入の抑制幅が大きく、貿易収支の黒字（48億米ドル）を計上した。この貿易収支の黒字化と、第1次・第2次所得収支の前年比微増傾向を受けた結果、2015年の常規収支は若干赤字が縮小、3年続けての常規収支赤字幅の減少を達成している。

国際収支（2008-2015）

インドネシアへの外国直接投資額（石油・ガス部門を除く）は2009年のリーマンショックによる一時的な落ち込み後、2010年以降、年平均25%増で伸びてきたが、2014年に若干落ち着いた。2015年に持ち直し、実績は前年比2.6%増の292億ドルと報告されている。2013年から引き続き、2015年の国別外国投資額でも、日本とシンガポールの2カ国で全体の3割を占めている。
図 1-3 外国投資許可額の推移
出所）投資調整庁（BKPM）

日本からの投資は 2011 年以降、62 億ドル（2011年）、79 億ドル（2012年）、47 億ドル（2013年）と高いレベルを維持してきたが、2014年は総選挙や大統領選挙の影響から投資控えが起こり、27 億ドルに低下、2015年は29億ドルに回復傾向を見せている。進出済みの大手企業に追随して部品工業の進出が続いており、サービス産業の進出も積極的であることから、日本からの直接投資は引き続き堅調に推移するとみられている。
1−2. ジャカルタの下水道整備における開発課題
1−2−1. 低い下水道・し尿処理設備普及率

首都圏であるジャカルタ特別州は急速な経済成長に伴い、人口増加や商業集積が顕著である一方、交通や上下水道等の都市基盤インフラの整備が遅れている。下水道に関し、インドネシアの全国平均は2%に留まり、ジャカルタ特別州においても3%に留まっている。
2016年現在、ジャカルタ特別州に存在する下水処理施設は、ジャカルタ特別州水管理局下で6カ所、ジャカルタ下水道公社下で6カ所である。また、し尿処理施設はジャカルタ下水道公社下で2カ所である。しかし、ジャカルタ特別州水管理局下の下水処理施設のうち、周辺住宅の生活排水を管渠内で集め、処理する下水処理施設はMalakasari地域にある1か所のみであり、その他の施設は河川浄化目的で川沿いに設置されているものである。
Malakasari下水処理施設は、周辺500世帯を対象とし、うち6割から7割程度の世帯と管渠で繋がっている。ただし、1990年代後半の設置以降、管渠の清掃が近年まで行われておらず、下水処理施設に流入する下水量は限定的と考えられる。
一方、ジャカルタ下水道公社下の下水処理施設は、アパートや工場、ビル等の下水処理施設であり、下水処理費用を徴収の上、運営されている。ただし、6カ所であるため、ジャカルタ全体での下水処理効果は限定的である。同公社下のし尿処理施設は、ジャカルタ東部に二カ所、北西部に一カ所存在し、管渠では繋がっていないため、各家庭の浄化槽からバキュームカーが収集してくるし尿を、25,000ルピア/m³で処理する方法を取っている。処理施設は固形物を分離させ、カチオン性ポリマーを加え、押し出し流方式で曝気処理後、放流されているが、窒素や硫化水素を除去するプロセスは用いられていない。

1−2−2. 下水道整備による、水質の悪化

生活排水やし尿などの下水は大抵、川や海に直接流されるか、浄化槽から特別な処理を経ないまま地下に浸み込んでいる状況にあり、地表水と地下水の水質の悪化を招いている。
ジャカルタの下水処理状況はBOD汚水で84mg/lであり、他の東南アジア諸国と比べ、第2位の悪さと言われている。なお、2015年に公表されたジャカルタ環境管理委員会（BPLHD）による水質調査結果では、ジャカルタ市内を流れるカリウン川の水質が最も悪く、検査箇所によっては、不純物総溶解度（TDS）2,000mg/l、総浮遊物質（TSS）200mg/lという結果となっている。
ジャカルタの下水処理割合は、浄化槽などのオンサイト設備を含めると88%のカバレッジと言われているが、実質的には地下への浸透を考慮すると、高いカバレッジに反し水質保全効果は相当低いものと想定される。上記①に触れた既存下水処理施設も、施設数は合計7カ所、し尿処理施設は2カ所であり、ジャカルタの全体的な水質改善へは効果は乏しい。この課題に対応するため、インドネシア政府は次項で触れる「ジャカルタ特別州下水道整備計画事業（Jakarta Sewerage System）」政策を打ち出し、下水処理状況の改善を図っている。

1 ジャカルタの下水道普及率に関する数値は、2016年9月19日付インドネシア衛生環境工学協会（IATPI）聞き取り結果
1-2-3. 用地確保・管渠工事の困窮状況

上記の「ジャカルタ特別州下水道整備計画事業（Jakarta Sewerage System）」政策は、集中処理型の下水道処理をベースとしたものとなっている。集中処理型の下水処理場は一定の広さを確保する必要があることから、人口密度の高いジャカルタにおいて居住地域内に下水処理場を設置するのは困難を極める。さらに、居住地域外に設置した場合、長距離に渡って管渠工事を行う必要があり、時間・費用の両方で多大なコストを支払う必要がある。

特に、昨今急速な発展を遂げ、さらに洪積が深刻なジャカルタにおいて下水道管の設置を進めるのは容易なことではなく、工事の進捗を妨げる結果となっている。また、それらの排水場所がゴミ捨て場になっているところも存在することから、排水水管つまり水害の危険性もまん延している。

1-2-4. 建設費の高さによる下水道処理事業推進遅延の可能性

1-2-3の開発課題で触れたインドネシア政府による「ジャカルタ特別州下水道整備計画事業（Jakarta Sewerage System）」は、次項で触れるJICAによる「ジャカルタ特別州下水道整備計画事業」でサポートされているが、先行事業である第一処理区（Zone 1）における事業総費用は約 5.2兆ルピア、同じく第六処理区（Zone 6）における総事業費は約 4.7兆ルピアと目されている。これは国家プロジェクトであり、資金調達は優先インフラ整備促進委員会（KPPIP）の役割であるが、2016年11月時点では、その調達源や割合につき正式な発表は行われていない。

下水処理施設の建設費用は国家予算より捻出し、施設の運営や管渠設置工事など、土地に関する費用は地方政府の負担となるが、地方政府予算で継続的に運転資金をすべてカバーし続けることは難しいと考えられており、この予算分配課題が下水道処理事業の遅延を引き起こす可能性は大きいと考えられる。

1-2-5. 下水道費用徴収制度の不備に伴う運営継続の困難さ

現在、下水道公社である PD PAL JAYA にて下水道処理費用の徴収制度はあり、ジャカルタの下水道処理費用は規程で定められているものの、今後下水道整備を進めた場合、十分な費用徴収ができるよう、制度面での検討も同時に進めていく必要があると考えられる。未徴収者への対応が規定で定められない限り、一定以上の徴収は難しいと考えられる。

また、運営費用が高い場合、受益者（住民）からの徴収費用も高額となり、住民からの反発も大きくなることは避けられないと考えられる。そのため、可能な限り運営管理コストを抑えることができる設備の導入が求められる。
1－3．開発計画、関連計画、政策及び法制度
1－3－1．ジャカルタ特別州における下水道計画全体像
このような状況を受け、インドネシア政府は「国家中期開発計画（RPJMN 2015-2019）」において、下水道をはじめとするインフラ整備の強化を推進している。その実現に向け、大統領 2016 年第 3 号にて国家戦略プロジェクトとして 225 のプロジェクトならびに 1 つの電力プログラムを指定。優先的に実行する 30 プロジェクトも合わせて選定されており、その優先プロジェクトの中の一つとして、DKI ジャカルタにおける「ジャカルタ特別州下水道整備計画事業（Jakarta Sewerage System）」が指定されている。

日本政府は 2012 年 10 月、日本／インドネシア両国政府間で「ジャカルタ首都圏投資促進特別地域（MPA）」マスタープランを承認しており、その中でフラッグシップ事業の一つとして「ジャカルタ特別州下水道整備計画事業」の特に第 1 処理区を対象とした支援を展開している。

ジャカルタ特別州下水道整備計画事業では、ジャカルタ市内外を既存運営地域も含め 15 の処理地域に分け、短期（2020 年）、中期（2030 年）、長期（2050 年）に渡り下水道整備計画を策定している。現在は短期プロジェクトとして第 1、第 6 処理区を中心とした整備が進められている。中でもまずは第 1 処理区の整備が進められており、総額約 5.2 兆ルピア規模の整備事業がなされている。第 1 処理区の整備事業では、「排水処理設備の建設」「配管システムの整備」「家屋・住居との接続」が盛り込まれており、家屋・住居との接続は約 4,901ha をカバーするものとなっている。（第 6 処理区含めた、その他の整備事業は現在、資金調達先も含め調整中）

長期的な下水道整備事業の推進により、現在 3％に留まっている下水道普及率を、2020 年までに 20％、2030 年までに 40％、最終 2050 年までには 80％まで引き上げる計画となっている。

1－3－2．関連規制の概況
本案件では、上記第 1、第 6 処理区以外の住宅密集地など、ジャカルタ特別州下水道整備計画事業の集中処理施設敷設を求める訳にはいかない地域や、集中処理施設のカバー範囲対象外で、分散処理方式で下水処理対応を進めていくことを検討しており、ジャカルタ特別州内の水質悪化をスポット的に、効率的に食い止めることを目的としている。

本案件を進めていくうえで、関連する法制度や規制類は下記リストのとおりであるが、各制度や規制類の詳細については、第 3 章にて触れるものとする。
(1) 生活排水基準に関する環境林業大臣令 2016 年第 68 号
(2) 排水基準に関する環境大臣令 2014 年第 5 号
(3) ジャカルタ州知事令 2012 年第 991 号
(4) PD PAL JAYA 社長決定 2016 年第 13 号

1－3－3．関連機関の整理
本案件に関する政策実施機関は下記リストのとおりである。
(1) インドネシア公共事業・国民住宅省 人間居住総局
 PUPR：Kementerian Pekerjaan Umum Dan Perumahan Rakyat
 国内の居住環境に関するマスター計画策定、規定準備策定機関

27
(2) 優先インフラ整備促進委員会
KPPIP：Committee for Acceleration of Priority Infrastructure Delivery
国家優先インフラプロジェクトの実施を促進する調整機関

(3) インドネシア環境林業省
KLHK：Kementerian Lingkungan Hidup dan Kehutanan

(4) インドネシア技術評価応用庁
BPPT：Badan Pengkajian dan Penerapan Technnologi
技術・研究・高等教育省傘下、インドネシア全国約500の自治体が導入する技術などを評価。技術審査機能を有し、データ提供が可能

(5) 住宅居住開発研究センター
PUSKIM：Pusat Penelitian dan Pengembangan Pemukiman
公共事業住宅省傘下の研究所、排水処理施設の認証機関

(6) 環境森林基準センター：新技術に関し、環境関連の審査を行う

(7) ジャカルタ特別州水資源局
Dinas Sumber Daya Air（略称：DSDA）：旧名称 Dinas Tata Air（旧略称 DTA）
ジャカルタ特別州内の排水処理施設の開発、整備、計画を実施する。本案件の主要カウンターパート

(8) ジャカルタ特別州環境局
Dinas Lingkungan Hidup（略称 DLH）：旧略称 BPLHD - Badan Pengelolaan Lingkungan Hidup Daerah
ジャ卡尔タ特別州内の排水基準監督を含む、環境関連の監督機関。2017年1月に清掃局と合併

(9) ジャカルタ特別州開発計画局
BAPPEDA：Badan Perencanaan Pembangunan Daerah
ジャカルタ特別州内の開発計画を策定する機関

(10) ジャカルタ特別州エンパワーメント、子供の保護、人口抑制局
DPPAPP：Dinas Pemberdayaan, Perlindungan Anak dan Pengendalian Penduduk DKI Jakarta
ジャカルタ特別州内のコミュニティ開発を促す機関

(11) ジャカルタ下水道公社
PD Pal Jaya
ジャカルタ特別州内の下水処理に関する施設管理を行う公社（ジャカルタ知事令により定められている）

(12) インドネシア衛生環境工学協会
IATPI：Ikatan Ahli Penyehatan dan Teknik Lingkungan Indonesia
上下水、廃棄物、大気汚染等の管理・コントロールを目的とした専門家協会

(13) インドネシアコンサルタント協会
INKINDO：Ikatan Nasional Konsultan Indonesia
インドネシアでコンサルタント業に携わる関係者の協会
なお、本案件に関しては、規模とスコープの観点からインドネシア国家開発省（BAPPENAS）を通す必要はないとの複数意見を得ており、現時点ではBAPPENASを調査対象に含んでいない。

JICAの基本方針として、調査対象国であるインドネシアは次のように謳われている。「長友関係を有する戦略的パートナーであるインドネシアの更なる経済成長に重点を置きつつ、均衡のとれた発展と、アジア地域及び国際社会の課題への対応能力向上を支援する。インドネシアは共同体の設立に向け ASEAN の中核国であるとともに、アジア地域における経済活動の重要な拠点であり、資源国である同国への支援を通じて同国との連携と互恵的関係を深化・拡大することにより、同国のみならず、我が国を含むアジア地域及び国際社会の安定と繁栄に寄与する。民間セクター主導の経済成長の加速化を図るため、ジャカルタ首都圏を中心にインフラ整備支援やアジア地域の経済連携の深化も踏まえた各種規制制度の改善支援等を実施する。ビジネス・投資環境の改善を図ると同時に、高等人材の育成支援等を行う。」

この中に明確にジャカルタ首都圏を中心にインフラ整備支援が取り上げられている。日本アルシが提案する事業は、ジャカルタ首都圏の生活排水の処理や衛生的な河川を取り戻すことで、アジア地域で抱える感染症の問題や環境保全の対応能力を援助国として向上させていくことを目指す点にも繋がるものである。さらに、初期投資・ランニングコストの低減、育成期間の短縮化などの日本アルシー製品の機能はインドネシア事情にも適合したものであり、我が国援助方針を実現するための一助として受け入れられやすい設備であると考えられる。
1-4. ODA事業の先行事例分析及び他ドナーの分析

JICAの「ジャカルタ特別州下水道整備計画事業」では、15年に分けられたジャカルタ特別州内の処理区のうち、先行処理区の第1処理区と第6処理区につき、集中処理と分散処理の部分を大枠で整理している。第1処理区の基礎・詳細設計を円借款で行う方向性であり、2016年11時点では基礎・詳細設計を実施するコンサルタントの選定中である。第6処理区についても、基礎・詳細設計が円借款のスコープであるが、2016年11月時点では、実現可能性調査を実施中であり、詳細は不明である。

また、イスラム開発銀行が中心となって進めている「コミュニティベース衛生施設建設プロジェクト（SANIMAS）」プロジェクトでは、2018年までにインドネシア全体で1800カ所の衛生施設を建設する計画である。ジャカルタ特別州では、州政府内の「エンパワーメント、子供の保護、人口抑制局（DPPAPP）」が本プロジェクトの実施を管理しており、州内44カ所の各コミュニティ内に衛生施設（嫌気性の排水処理施設等）を建設する予定である。2017年2月時点で、そのうち8カ所における建設が進められており、70％の進捗度合と報告されている。その他のコミュニティに関しては、大きな進捗は見られていない。

（2017年2月 DPPAPP局長 Dr. Dien Emawati, M.Kes氏による SANIMASプロジェクト進捗報告説明資料より）

なお、同 SANIMASプロジェクトに関し、ジャカルタ特別州では州政府の水管理局（DSDA）とジャカルタ特別州環境局（DLH：旧名称 BPLHD）が関与しており、ジャカルタ特別州環境局は本プロジェクトに適したロケーションの選択に関わっている。同プロジェクトを進める上での課題となっているのは、ターゲットエリアがスラム等の人口密集地帯であることから、コミュニティの下水処理施設建設用地の確保が難しい点、用地が確保されたとしても洪水が発生する可能性が高いエリアである点、コミュニティのコミットメントが得られにくい点が挙げられている。
1-5. ビジネス環境の分析

1-5-1. 事業展開オプションとビジネス展開時の規定
本案件の申請者である日本アルシー社が、インドネシアでバイオアルシーを展開するには次的方法が考えられる。
(1) インドネシア国内に現地企業を設立し、設計・建設・運営を一貫して担う
(2) インドネシア国内に現地企業を設立し、設計コンサルティングとして、バイオアルシーの設計サービスのみを行う
(3) インドネシア国内に現地企業を設立し、建設サービスのみを実施
(4) インドネシア国内に現地企業を設立し、運営サービスのみを実施
(5) 現地企業を設立せずに、すべて日本、または他国の拠点からサービスを提供
(1)から(4)までの現地企業を設立する場合、次のような外資規制を考慮する必要がある。

表 1-2 インドネシア外国投資に関するネガティブリスト（当該部分抜粋）

<table>
<thead>
<tr>
<th>事業分野</th>
<th>条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>簡素及び中度の技術を利用した及び/或いは低/中リスク及び/或いは工事金額が 500 億ルピア以下の建設サービス（建設実施サービス）</td>
<td>中小零細企業・協同組合のため留保</td>
</tr>
<tr>
<td>簡素及び中度の技術を利用した及び/或いは低/中リスク及び/或いは工事金額が 100 億ルピア未満の建設サービス（建設実施サービス）</td>
<td>中小零細企業・協同組合のため留保</td>
</tr>
</tbody>
</table>
| 高度な技術を利用した及び/或いは高リスク及び/或いは工事金額が 500 億ルピア超の建設サービス（建設実施サービス） | a. 外資最高 67％
b. アセアン加盟国からの投資家の場合、最高 70％ |
| 高度な技術を利用した及び/或いは高リスク及び/或いは工事金額が 100 億ルピア超の建設コンサルティングサービス | a. 外資最高 67％
b. アセアン加盟国からの投資家の場合、最高 70％ |

出所）JETRO「投資分野において閉鎖されている事業分野及び条件付きで開放されている事業分野リストに関する大統領規程 2016 年第 44 号添付書類リスト（2016 年ネガティブリスト）」

表1-2のインドネシア外資規制によれば、工事金額が 500 億ルピア超の建設実施サービスか、工事金額が 100 億ルピア超の建設コンサルティングサービスであれば、最高 67％までの出資が日本アルシーには認められている。運営に関しては当該する事業分野はネガティブリスト内に見当たらないため、現地企業を設立することには外資の出資規制は当てはまらず、100％出資が可能と考えられる。

一方、外資企業には総資本額と資本金の最低金額も定められており、総投資額は土地建物を除く投資額の合計が 100 億ルピア以上、引受資本（＝払込資本）は 25 億ルピア以上でないとならない。
これらの条件をクリアした場合、インドネシア国内での現地企業設立の道が開かれるが、
一般的に、次のプロセスを経る必要がある。
(1) 外国投資登録申請・原則許可
(2) 会社税務番号取得
(3) 会社所在地の地方労働局承認申請
(4) 会社登録（TDP）
(5) 外国人雇用計画提出、滞在許可、就労許可申請
(6) 立地許可
(7) 建設権（HGB）
(8) 環境影響分析（AMDAL）
(9) 環境監視/管理方法（UKL/UPL）
(10) 環境管理契約書（SPPL）
(11) 建築許可（IMB）
(12) 輸入業者証明申請
(13) 通関基本番号申請
(14) 資本財マスターリスト提出
(15) 恒久的操業認可（IUT）

１－５－２．排水処理施設関連の申請・許可プロセス
また、上記の一般的な会社設立必要項目に加えて、排水処理施設関連の企業に関し、次の申請・認可プロセスが必要である。設立企業の内容により、必要な認可が異なるため、方向性が確定次第、認可類の再整理が重要となる。
(1) 工業計画類・水利技術エンジニアリングデザインサービスに関する事業体認可
(2) 建設サービス事業認可
(3) 排水処理設備計画企業認可
(4) 排水処理設備計画チームメンバー/人材認可
(5) 排水処理設備設置認可
(6) 排水廃棄ライセンス
(7) 排水処理設備認可
第2章 製品・技術の特長及び海外展開の方針

2-1. 製品・技術の特長

2-1-1. 製品・技術の詳細

通常の排水処理施設で利用されている活性汚泥処理設備は自然の浄化作用である池や川や湖のミニチュア版であるが、本製品（商品名：バイオアルシー）は、微生物を高効率で培養するバイオリアクターの理念を元に開発した排水処理設備である。標準活性汚泥処理方法に比べて、単位容積あたり10倍以上のBOD（生物化学的酸素要求量）処理能力があり、本設備の普及が進むに連れて数々の経済的なメリットが確認されてきた。

日本のアルシーは長年、公共下水処理場や食品工場排水、染色排水、自動車工場や自動車部品工場における活性汚泥処理不能からの機能回復対策、いわゆるパルキング対策を実施している。この対策実施過程において、微生物処理の原点から基礎研究を実施し、開発・発明されたのが究極の活性污泥処理法であるバイオアルシーである。

パルキングには様々な原因があるが、日本アルシーの研究結果からその主たる原因が二つ存在することが導き出されている。一つには、活性汚泥中の微生物の増殖が阻害されること、二点目は、原水中的難分解物質が微生物分解されず、未分解物質として活性汚泥中に残存することである。これらの原因により活性汚泥処理能力が低下することで、活性汚泥中に系状細菌が繁殖し、沈殿槽での固液分離障害が発生する。一度パルキングが発生すると日本ではパルキング対策に1〜2ヶ月間を要することが一般的であったが、日本アルシーは2〜3日間で治す方法を開発し、パルキング対策を実施してきた。

日本のアルシーは唯一のパルキング対策会社として、この技術を用いたバイオアルシーを開発し、普及に努めている。本製品は、難分解性の動植物油や界面活性剤を前処理する必要がなく、パルキング無く処理出来る唯一の排水処理設備である。高い処理性能、パルキングの発生なく安定した運転ができること、比較的少ない設置面積というような長所を備え、設置・使用件数を着実に増加させてきたところ、次の4点のような経済的な利点や特長が表れている。
（１）狭い敷地でも大きな処理能力
活性汚泥処理の処理性能は微生物処理槽の容積負荷で表される。広く普及している標準活性汚泥処理場の設計指針では 0.2kgBOD/日 m³以下であるのに対して、本製品の容積負荷は 2〜5kgBOD/日 m³程度かけられるため、曝気槽容積を小さくできる。

さらに、バイオアルシー処理槽は、嫌気処理槽と好気処理槽を同じ槽内に、仕切りを入れて上下に配置し、その外側上部に沈殿槽を設置する。上下 3 階建て一体構造水槽のコンパクトな設備となっている（図 2-1 参照）。通常の活性汚泥処理設備は、嫌気処理槽と好気処理槽ならびに沈殿槽がそれぞれ独立して建設されるため、広い敷地を必要とする。

本製品は、工場内の設置更新時や、都市部の狭い敷地面積しか確保出来ない所でも設置が可能であり（標準活性汚泥処理設備の30％以下で処理可能）、大きな処理能力をもつため効率的である。また、建設コストも標準活性汚泥処理方法の約30％〜50％程度と安価である。

（２）前処理関連費用の削減
本製品は微生物処理能力が高いため、原水中に動植物油由来の n-Hex 浓度が 2,000mg/L程度までは前処理無しで、汚水処理をすることが可能である。つまり、前処理薬品（PAC,NaOH,ポリマー）が必要であり、前処理汚泥が発生しないため、（前処理分の）汚泥処理費用も不要となる。

（３）余剰汚泥の発生抑制による備品・設備関連費用・人件費の削減
本製品では、余剰汚泥の発生は BOD の 1％、COD の 5％以下程度であり、ほとんど余剰汚泥の引き抜きを必要としない（標準活性汚泥法では BOD の 10％、COD の 50％の余剰汚泥が発生する）。また、一般的に余剰汚泥は、原水供給口に脱水機を据え付けて脱水をする必要があるが、バイオアルシーでは 10 年間脱水をしなくても全く問題が無いことが、バイ
オアルシーを設置した95%以上の場所で確認されている（通常の有機排水の場合）。この事は、余剰汚泥の脱水設備や脱水用凝集剤添加設備、それに付随する薬品が必要になること
を意味する。また、脱水汚泥が無いため、汚泥処分費も不要である。
さらに、汚泥の引き抜きから脱水の処分に至る工程がなくなることは、メンテ・運転要
員が現場に常駐する必要が無く、要員の確保や育成が不要になるため、大幅な人件費の削
減ができる。

（4）水量変動や負荷変動に強い安定的な処理能力

本製品は、嫌気槽→好気槽→沈殿槽→嫌気槽を立体的に1槽に集約し、曝気風力により
安定した循環流を形成させたうえで嫌気部分に原水を入れるため、通常の押し出し流方式
と比較して、3倍程度の水量変動や不可変動ならば吸収することが可能である。この安定
した循環流により、返送ポンプは不要であり、返送汚泥も発生しない。

これらの特長により、現地での運転管理を省き、遠隔監視や遠隔操作によって無人自動
運転管理ができる。通常、活性汚泥処理の運転管理には、微生物処理の知識や技術を有す
る人材が必要であるが、これらの人才を確保しにくい途上国や企業において、導入後の運
転管理がしやすいことも大きな特長である。

35
2-2. 期待される日本の地域経済への貢献

2-2-1. 部品産業への貢献
本事業が実施されることにより、短期的には、本製品の心臓部となる各部品の調達が発生し、日本国内の関連製造業の雇用創出につながると見込みである。先述の通り、現地調達が難しい部品（電動機、ガク機、電気計装設備、測定器、センサー、そして耐久性のあるプロワーやポンプなど）は日本で調達することとなる。特に、水処理設備では耐久性の高い機械を使用することが最も重要であり、定期修理が不要、且つ5年以上の継続使用が可能な機械が望ましい。この条件に耐えうる部品は日本製以外難しく、本事業の展開により日本製品の輸出増加に貢献すると考える。

2-2-2. その他 ASEAN 地域への貢献
下水処理にかかる課題はインドネシアのみならず、他の新興国においても同様と考えられる。多くの地域において、必ずしも十分な下水道費用の徴収制度が未だ十分に整備できておらず、十分な予算が確保できない場合や、十分な安全基準に即した運用がなされていないことも存在すると考えられる。本製品の展開はインドネシアに限らず他のASEAN地域での生活排水や工場排水の環境問題の解決にも貢献でき、地域経済の活性化のみならず、国レベルで大きな意義があると考えられる。
第3章 調査及び活用可能性の検討結果

3-1. 製品・技術の現地適合性検証方法

3-1-1. 本案件にかかる調査対象の確認
インドネシアにおける下水道普及率は2%（2014年）程度に留まっているものを2050年までに80%まで引き上げる方針となっている。一方、ジャカルタ下水道整備計画マスタープラン（2012年）において、集中処理設備を推進しているものの、全地域のカバー率は80%に留まる。

一方、し尿処理として嫌気式オンサイト処理施設SANIMASの設置が進められているが、嫌気のみの処理に留まっている。また、個別住宅やマンションに対してもセブティック・タンクの設置義務があるものの、汚泥引き抜きなどの運用・メンテナンスが不十分であり、放流水質が未だ十分とは言い難い状況にある。

上記のような「低い下水道・し尿処理設備普及率」「下水道設備による水質の悪化」だけでなく、「用地確保・管渠工事の困難状況」「建設費の高さによる下水道処理事業推進遅延の可能性」「下水道費用徴収制度の不備に伴う運営難の困難さ」などが存在している。
バイオアルシーフ法は広大な土地は不要であること、運営費用が低く、運営難に課題を残すジャカルタの状況に合致している。

そのような状況を受け、本案件では特に住宅・マンションにおける生活排水／し尿処理を主要対象とし、バイオアルシーフ法の導入可能性の検証を進めていている。なお、民需に関じては第5章「ビジネス展開の具体的計画」にて詳細を議論したい。

表 3-1 対象市場イメージ

<table>
<thead>
<tr>
<th></th>
<th>生活排水</th>
<th>し尿</th>
<th>工業排水</th>
</tr>
</thead>
<tbody>
<tr>
<td>住宅・マンション</td>
<td>本事業の主要対象</td>
<td>本事業の主要対象</td>
<td>-</td>
</tr>
<tr>
<td>工業団地・工場</td>
<td>△ (民需中心に調査)</td>
<td>△ (民需中心に調査)</td>
<td>○ (民需中心に調査)</td>
</tr>
<tr>
<td>商業施設</td>
<td>○ (民需中心に調査)</td>
<td>○ (民需中心に調査)</td>
<td>-</td>
</tr>
</tbody>
</table>

出所）日本アルシー

3-1-2. 適合性の検証方法
本事業は8つの活動により、本製品・技術の適合性の検証を進めていている。それぞれの活動における、目的／活動内容／適合性の検証方法は以下の通り。
図 3-1 適合性の検証に向けた本事業の調査フロー

出所）日本アルシー

表 3-2 各活動の目的／活動内容／検証方法

<table>
<thead>
<tr>
<th>活動</th>
<th>目的</th>
<th>活動内容</th>
<th>検証方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.ジャカルタ下水道整備計画の現状・課題把握</td>
<td>1.ジャカルタ首都圏投資促進特別地域（MPA）マスタープランの確認 2.優先対象地域である第1処理区、第6処理区のプロジェクト状況確認 3.プロジェクト関係者（JICA専門家、DKI Jakarta、PD-PAL JAYA、関係事業者など）へのヒアリング 4.各プロジェクトの進捗状況確認 5.推進時の課題、留意すべき点の分析 6.バイオアルシーフ法の普及時のポイント整理</td>
<td>JICA 専門家、Dinas Tata Air、PD Pal Jaya、KPPIP など関係者へのインタビュー、関連資料の調査、上記関係者からの資料受領</td>
<td></td>
</tr>
<tr>
<td>2.排水設備導入にかかる制度分析</td>
<td>1.排水設備関連規制、標準法の整理 2.担当省庁・地方自治体による下水道処理設備業者選定の実態把握 3.処理費用徴収プロセスと課題の整理</td>
<td>Dinas Tata Air、PD Pal Jaya、PU 人間居住冊書、PUSKIM など関係者へのインタビューおよび資料の受領</td>
<td></td>
</tr>
</tbody>
</table>

38
| 3.参入可能エリアの把握 | 参入可能なマーケットの確認
普及実証事業が可能なパイロットサイトの選定 | 1.排水設備導入計画・現状・課題を踏まえた優先順位づけ
2.上記周辺地域の排水設備利用実態の把握
3.上記地域における水質調査の実施
4.参入優先度の決定と普及・実証事業における対象サイトの特定 | JICA 専門家、Dinas Tata Air、PD Pal Jaya との調整 |
| 4.バイオアルシーより分配処理設備の優位性把握 | 現在利用／計画されている処理設備との比較優位性の明確化
ジャカルタ下水道への適性検証 | 1.日本アルシーならびに当該設備の強みの整理
2.競合他社参入実態・推進時の課題整理
3.対象分野におけるニーズ・課題整理
4.日本アルシーにおける競争優位性の整理 | JICA 専門家、KPPIP、Dinas Tata Air、PD Pal Jaya との協議 |
| 5.バイオアルシーや見学会の実施 | バイオアルシーフェアの理解促進 | 1.活動１と合わせた見学会の開催（各関係者との理解の促進）
2.事業推進円滑化のための見学会の開催（適宜実施）
3.活動７と合わせた見学会の開催（キーパーソンへの招待） | 施設オーナーとの調整、関係者の招待 |
| 6.ビジネスモデルの検討 | 民需における適合可能性の検証 | 1.ビジネスパートナーとの連携強化
2.ビジネススキームの検討
3.リスクの抽出と事業性の検証
4.ビジネスパートナーとのスキーム確認 | 工業団地、商業施設デベロッパー等との協議 |
| 7.普及方法の検討 | 官需／民需における普及方法の検討
関係者のコミットメントの確認 | 1.各種チャネルへの普及可能性
2.最適な普及方法の検討
3.ビジネスパートナー・関係者と方針・次ステップの確認
4.普及・実証調査（ODA 案件）を踏まえた推進ステップの検討 | カウンターパート（Dinas Tata Air、PD Pal Jaya）関係者との協議 |
| 8.報告書作成 | 報告書のまとめ | 報告書のとりまとめ
出所）日本アルシー |

出所）日本アルシー
3-2. ジャカルタ下水道整備計画の現状

3-2-1. 改定マスタープランの状況
（1）ジャカルタ特別州下水道整備マスタープラン（2012）の目標値
JICA の支援によって作成された、ジャカルタ特別州下水道整備マスタープラン（2012）において短期（2012〜2020 年）、中期（2021〜2030 年）、長期（2031〜2050 年）の３つの期間に分けて、目標値が設定されている。

✓ 実施済処理区：Zone4
✓ 短期整備計画（〜2020 年）：Zone 1、6
✓ 中期整備計画（〜2030 年）：Zone 3、5、10
✓ 長期整備計画（〜2050 年）：Zone 2、7、8、9、11、12、13、14

本目標値では、オフサイト（集中処理）／オフサイト（分散処理）の比率を 2020 年ではオフサイト 15％／オンサイト 85％、2030 年時でオフサイト 35％／オンサイト 65％、2050年時ではオフサイト 80％／オンサイト 20％と設定されている。

表 3-3 ジャカルタ特別州下水道整備マスタープラン（2012）の目標値

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Populasi Desain</td>
<td>1,000PE</td>
<td>12,665 12,665 12,665 11,994 12,665</td>
<td>12,665 12,665 12,665 12,665 12,665 12,665 12,665</td>
<td></td>
</tr>
<tr>
<td>Populasi Administratif</td>
<td>1,000PE</td>
<td>10,035 10,361 11,284 11,994 12,665 12,665 12,665 12,665</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio Cakupan Fasilitas</td>
<td>%</td>
<td>2 7 10 20 30 40</td>
<td>50 65 75 80 90</td>
<td></td>
</tr>
<tr>
<td>Ratio Cakupan Pelatihan</td>
<td>%</td>
<td>2 4 15 25 35 45 55 70 80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Populasi Terlajur untuk off-site</td>
<td>1,000PE</td>
<td>168 387 1,685 2,834 4,478 5,775 7,130 9,512 10,166</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio Pengolahan On-site</td>
<td>%</td>
<td>85 96 95 75 65 55 45 30 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Populasi Terlajur untuk on-site</td>
<td>1,000PE</td>
<td>8,567 9,074 9,599 9,110 8,178 6,890 5,553 4,093 2,590</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio Banjir Air Besar Sembarangan</td>
<td>%</td>
<td>13 0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Populasi yang menghadapi Banjir Air Besar Sembarangan</td>
<td>1,000PE</td>
<td>1,300 0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio Penurunan BOD</td>
<td>%</td>
<td>0 11 46 52 61 66 72 77 84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kualitas Air Sungai (BOD)</td>
<td>mg/L</td>
<td>61 54 33 29 24 21 17 14 10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

出所）JICA MPレビュー
（2）首都湾岸整備計画を踏まえた上の目標値
マスタープランの推進とは別で進められていた首都湾岸整備計画（NCICD : The National Capital Integrated Coastal Development）の推進により、下水道計画も変更されている。NCICDは港湾整備だけでなく、湾岸地域におけるスポーツ施設、工業団地などの建設も含まれており、その整備推進に伴い下水道の整備も盛り込まれている。
この計画では、2022年までに75％の下水道整備を目標値として設定されていることから、JICAマスタープランでの見直しと合わせて、PD Pal Jayaでの検討も進められた。現状では目標とする75％のうち、65％をオフサイトにて、10％をオンサイトにて整備する計画となっている。オフサイト65％の内訳として、40％のオフサイト+25％のCommunal/Modularにて達成する目標となっている。

図3-2 NCICDならびにJICAマスタープランレビューを踏まえた目標値
出所：Jakarta Sewage Development Review of Master Plan Zone1 to Zone10
表 3-4 下水道整備目標値の達成に向けたスキーム

3-2-2. Zone 1, Zone 6 の現状

2020 年までの短期整備計画として設定されていた Zone 1 ならびに Zone 6 の状況について、JICA インドネシア、KPPIP、Dinas Tata Air、PD Pal Jaya に確認した結果、現時点での推進状況として以下の回答を得た。

表 3-5 Zone1、Zone6 の現状

<table>
<thead>
<tr>
<th>Zone1</th>
<th>Zone6</th>
</tr>
</thead>
<tbody>
<tr>
<td>現在、コンサルタントの選定中。コンサルタントの選定後、基礎設計／詳細設計へと進めていく予定（現在の円借款の範囲では、設計までであり、建設費用は入っていない）</td>
<td>現在、円借款組成に向けて実現可能性調査を実施中。そのため、詳細は現時点では公開できない（Zone1 同様に基礎設計／詳細設計までが円借款のスコープであり、建設費用は入っていない）</td>
</tr>
</tbody>
</table>

出所）各インタビューより調査団作成
3-3. 規制・基準の整備状況
3-3-1. 排出基準
バイオレッカーによる処理を想定している生活排水には、一般家庭から排出されるものの
ほか、集合住宅や宿泊施設など事業活動に起因して排出されるものがある。
処理後の水質基準として、以下の基準が設定され、施行されている。

（１）生活排水の水質基準に関する環境林業大臣令 2016 年第 68 号
ア. 施行日
2016 年 9 月 2 日（公布日に同じ）

イ. 規制を受ける対象
本法律では、いかなる活動に起因する生活排水も処理が求められており（第 3 条）、
排出源となる主体は、具体的には添付文書 I において、表 3-6 のように明記されている。

<table>
<thead>
<tr>
<th>表 3-6 規制対象となる排出源の例</th>
</tr>
</thead>
<tbody>
<tr>
<td>共同宿舎 / フラット（Rumah susun）</td>
</tr>
<tr>
<td>宿泊施設（Penginapan）</td>
</tr>
<tr>
<td>寮（Asrama）</td>
</tr>
<tr>
<td>医療施設（Pelayanan Kesehatan）</td>
</tr>
<tr>
<td>教育施設（Lembaga Pendidikan）</td>
</tr>
<tr>
<td>事業所 / オフィス（Perkantoran）</td>
</tr>
<tr>
<td>商業施設（Perniagaan）</td>
</tr>
<tr>
<td>市場（Pasar）</td>
</tr>
<tr>
<td>飲食店（Rumah Makan）</td>
</tr>
<tr>
<td>会館（Balai Pertemuan）</td>
</tr>
</tbody>
</table>

出所）環境林業大臣令 2016 年第 68 号添付資料 I より JICA 調査団作成

ウ. 要求事項
（ア）生活排水の処理
各家庭より排出される一般生活排水は、中央政府、もしくは地方政府が適切な下水処
理設備を提供、運用し、処理するとされている。なお、設備の設置や運営においては、民
間セクターとの連携も認められている。（第 6、7 条）
一方、その他の規制を受ける対象が、生活排水を独自で、あるいは独自処理能力では
基準を満たすことができない場合は、環境許可（SPPL）ならびに排水排出許可を有する
外部機関に委託の上、処理することが求められている。（第 6 条、第 7 条）
処理にあたっては、生活排水単独で、あるいは、事業や活動に伴う排水が排出される
場合には、これらと生活排水と混合で処理する方法が認められている。（第 4 条）
(イ) 水質基準の遵守

生活排水単独での処理を行う場合には、放流時において、本大臣令の添付資料Iに定められた表3-7の水質基準を満たすことが求められている。

<table>
<thead>
<tr>
<th>項目</th>
<th>基準値（上限値）</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6-9</td>
</tr>
<tr>
<td>BOD</td>
<td>30mg/L</td>
</tr>
<tr>
<td>COD</td>
<td>100mg/L</td>
</tr>
<tr>
<td>TSS</td>
<td>30mg/L</td>
</tr>
<tr>
<td>油脂</td>
<td>5mg/L</td>
</tr>
<tr>
<td>アンモニア</td>
<td>10mg/L</td>
</tr>
<tr>
<td>大腸菌</td>
<td>3,000個/100mL</td>
</tr>
<tr>
<td>排出量</td>
<td>100L/人/日</td>
</tr>
</tbody>
</table>

出所）環境林業大臣令2016年第68号添付資料よりJICA調査団作成

一方、事業活動等、他の活動に起因する排水との混合処理を行う場合は、添付資料IIに記載された計算式に基づいて定められる基準を遵守することが求められている。

1. 最大排水排出量

\[Q_{\text{max}} = \sum_i^Q_i + \cdots + Q_m \]

ただし、
\(Q_{\text{max}} \)：1回あたりの最大排水排出量（m³）
\(Q_i \)：活動iにおける、単位時間あたりの最大生活排水排出量（m³/時間）
\(Q_m \)：活動mにおける、単位時間あたりの最大排水排出量（m³/時間）

2. 最大負荷

\[C_{\text{max}} = \sum_i^n C_i Q_i + C_n Q_n / Q_i + Q_n \]

ただし、
\(C_{\text{max}} \)：各項目の最大負荷（mg/L）
\(C_i \)：活動iにおける、単位時間あたりの生活排水水質基準の各項目の最大負荷（mg/L）
\(Q_i \)：活動iにおける、単位時間あたりの最大生活排水排出量（m³/時間）
\(C_n \)：活動nにおける、単位時間あたりの排水水質基準の各項目の最大負荷（mg/L）
\(Q_n \)：活動nにおける、単位時間あたりの最大排水排出量（m³/時間）

設定のない項目について
1. ある活動において、本大臣令の添付文書第1番で指定されている項目がある場合には、
 然るべき許可を得た上で、排水水質基準の項目に追加される。
2. 複数の活動において、本大臣令の添付文書第1番で指定されている項目がある場合には、
 然るべき許可を得た上で、排水水質基準の項目に最も厳しい基準において追加される。
各州政府は、然るべき科学的調査に基づき、上記よりも厳しい基準を設定することができる（第9条）。ジャカルタ特別州については、本大臣令に定められた基準は、同州の既存の基準を上回る基準となったため、当面は本大臣令に定められた基準に準じる意向が、本調査において確認されている。

（ウ）水質監視報告書の提出（第5条）
規制を受ける対象は、生活排水処理の結果について、以下のように水質監視報告書を提出することが求められている。
・ 内容：各日の下水処理量と処理水のpH、各項目の水質分析結果（最低1ヶ月に1回）
・ 提出頻度：最低3ヶ月に1回
・ 提出先：各県・市の長（知事、大臣、法令に基づきその他関係する機関に複製を提出）

（2）産業排水の水質基準に関する環境大臣令2014年第5号
ア．施行日
　2014年10月25日（公布日）

イ．法令の対象
産業分野のすべての事業主体は、それが行う事業や活動に起因する排水に対して、本大臣令で定められた基準を遵守することが求められている。

ウ．要求事項
（ア）指定された水質基準の遵守
本大臣令の対象は、大きくて以下の①〜③の3種類に大別される。
① 45の指定業種
各指定業種に対して遵守すべき水質基準が個別に定められている。指定業種の一覧は表3・8の通り。

2 2017年1月24日にジャカルタ州環境管理局に対して聞き取り調査を行った際に入力した情報に拠る。
表 3-8 排水基準が定められている指定業種

<table>
<thead>
<tr>
<th>添付文書番号</th>
<th>分野</th>
<th>添付文書番号</th>
<th>分野</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>金属塗装</td>
<td>24</td>
<td>電気機器製造</td>
</tr>
<tr>
<td>2</td>
<td>皮なめし業</td>
<td>25</td>
<td>コーヒー加工</td>
</tr>
<tr>
<td>3</td>
<td>バーミキュラ製造</td>
<td>26</td>
<td>製糖</td>
</tr>
<tr>
<td>4</td>
<td>ゴム製造</td>
<td>27</td>
<td>石油化学（上流）</td>
</tr>
<tr>
<td>5</td>
<td>タピオカ加工</td>
<td>28</td>
<td>レーヨン製造</td>
</tr>
<tr>
<td>6</td>
<td>グルタミン酸ナトリウム並びにイソシンソリン酸製造</td>
<td>29</td>
<td>窯業</td>
</tr>
<tr>
<td>7</td>
<td>合板製造</td>
<td>30</td>
<td>PTA（テレフタル酸）製造</td>
</tr>
<tr>
<td>8</td>
<td>牛乳・乳飲料製造</td>
<td>31</td>
<td>PET（ポリエチレンテレフタレート）製造</td>
</tr>
<tr>
<td>9</td>
<td>ソフトドリンク製造</td>
<td>32</td>
<td>石油化学（下流）³</td>
</tr>
<tr>
<td>10</td>
<td>石鹸、合成洗剤、植物油製造</td>
<td>33</td>
<td>基礎油脂化学</td>
</tr>
<tr>
<td>11</td>
<td>ビール製造</td>
<td>34</td>
<td>苛性ソーダ製造</td>
</tr>
<tr>
<td>12</td>
<td>鉛蓄電池製造</td>
<td>35</td>
<td>パルプ・紙製造</td>
</tr>
<tr>
<td>13</td>
<td>青果製造</td>
<td>36</td>
<td>エタノール製造</td>
</tr>
<tr>
<td>14</td>
<td>水産加工</td>
<td>37</td>
<td>乾電池製造</td>
</tr>
<tr>
<td>15</td>
<td>海草加工</td>
<td>38</td>
<td>塗料製造</td>
</tr>
<tr>
<td>16</td>
<td>油加工</td>
<td>39</td>
<td>製薬</td>
</tr>
<tr>
<td>17</td>
<td>食肉加工</td>
<td>40</td>
<td>殺虫剤製造</td>
</tr>
<tr>
<td>18</td>
<td>大豆加工</td>
<td>41</td>
<td>肥料製造</td>
</tr>
<tr>
<td>19</td>
<td>伝統的医薬品製造・薬草加工</td>
<td>42</td>
<td>繊維製造</td>
</tr>
<tr>
<td>20</td>
<td>牛・豚飼育業</td>
<td>43</td>
<td>接客業</td>
</tr>
<tr>
<td>21</td>
<td>食用油製造</td>
<td>44</td>
<td>医療施設</td>
</tr>
<tr>
<td>22</td>
<td>砂糖製造</td>
<td>45</td>
<td>食肉処理業</td>
</tr>
<tr>
<td>23</td>
<td>タバコ製造</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

出所）環境大臣令 2014 年第 5 号に基づき JICA 調査団作成

② 一般分野：生活排水の排出が想定される分野として、以下の 3 分野が指定されており（第 4 条）、これらについては別途排水基準が定められている（添付文書第 46 番）。
- 住宅/業所/商業地域、並びに集合住宅
- 飲食店（床面積 1,000m² 以上）
- 宿泊施設（100 部屋以上）

³ 原文に記載されている産業分野は添付文書第 27 番と同じ「石油化学（上流）（Industri Petrokimia Hulu）」であるが、Industri Petrokimia Hilir との記載であると想定し、ここでは「石油化学（下流）」と記載している。
3 その他
1. 項、および第2項に指定のない排出源については、以下の区分に従い、添付文書第47番の通り、水質基準が定められている。
区分1：処理水の放流先が一級河川である場合、あるいは原水のBODが1,500mg/LかつCODが3,000mg/Lの場合
区分2：処理水の放流先が一級河川ではなく、かつ、原水のBODが1,500mg/Lを超える、あるいはCODが3,000mg/Lの場合
ただし、以下の業種に係る水質基準については、新たに定められた生活排水基準に関する環境省令大臣命令2016年第68号の基準が適用されることが、同法令に定められている。
・ 接客業（添付文書第43番）
・ 医療施設における生活排水（添付文書第44番のうち、項目A）
・ 一般分野（添付文書第46番）
なお、各州政府は、当該排水基準を満たす排水が地域の環境容量を超えることを科学的検証に基づき確認ことができた場合には、上乗せ基準を設定することができる。ただし、この妥当性の検証は、最低5年に1回の見直しが必要である。（第4条）

（イ）水質監視報告書の提出（第16条）
すべての排出者は、以下に基づき、所定のフォーマットに基づき水質監視報告書を作成、提出することが求められている。
・ 内容：各日の排水量、原材料及び生産状況、排水基準の項目、排水負荷
・ 提出頻度：最低1ヶ月に1回

3-3-2. 行政処分と罰則規定
上述の環境准業大臣命令2016年第68号、並びに、環境大臣命令2014年第5号には行政処分並びに罰則規定に関する記述はないが、これらの上位法にあたる「環境保護と管理に関する法律2009年第32号」4では、以下のような行政処分並びに罰則規定が記載されている。

（1）行政処分
本法律では、大臣、州知事、県知事/市長は、環境許可の違反を見出した場合、事業主または活動の責任者において3-9の通り、行政処分が科されることが明記されている。（第76条、第80条）

表 3-9 環境許可の違反により課される行政処分

<table>
<thead>
<tr>
<th>初動において書類を伴わない 行政処分</th>
<th>書類を伴う行政処分</th>
</tr>
</thead>
<tbody>
<tr>
<td>以下の違反に該当する場合</td>
<td>a. 書面による警告</td>
</tr>
<tr>
<td>1. 人間と環境に対する極めて深刻な脅威</td>
<td>b. 政府による強制</td>
</tr>
<tr>
<td>2. 汚染あるいは劣化が凍結する場合 以外の、より広範な影響</td>
<td>以下の方法にて強制（第 80 条）</td>
</tr>
<tr>
<td>3. 汚染あるいは劣化が凍結する場合 以外の、環境のより重大な損失</td>
<td>b-a. 生産活動の停止</td>
</tr>
<tr>
<td></td>
<td>b-b. 生産設備の除去</td>
</tr>
<tr>
<td></td>
<td>b-c. 排水または排出処分配管の閉鎖</td>
</tr>
<tr>
<td></td>
<td>b-d. 取り外し</td>
</tr>
<tr>
<td></td>
<td>b-e. 違反を引き起こしている可能性のある製品もしくは道具の没収</td>
</tr>
<tr>
<td></td>
<td>b-3. 全活動の停止</td>
</tr>
<tr>
<td></td>
<td>b-d. 違反の停止もしくは被害を回復する意思を持ってその他の行動</td>
</tr>
<tr>
<td></td>
<td>c. 環境許可の凍結</td>
</tr>
<tr>
<td></td>
<td>d. 環境許可の取消し</td>
</tr>
</tbody>
</table>

出所）法律2009年第32号に基づきJICA調査団作成

環境林業大臣令 2016 年第 68 号では、生活排水処理を独自処理能力では基準を満たすことができない場合は、環境許可（SPPL）ならびに排水排出許可を有する外部機関に委託の上、生活排水を処理することが求められている。このことから、生活排水処理も、委託を受けた処理事業者が適切に処理をしなければ、行政処分の対象となり得る。

（2）罰則規定
本法律では、本法を犯す場合は重罪に処すと示した上（第 97 条）で、環境林業大臣令 2016 年第 68 号第 6 条に定められているように、生活排水処理を委託されている事業者が、3 - 1 - 1 項で示した水質基準を含む、基準の遵守が損なわれた場合、生活排水処理事業の責任者は表 3-10 の罰則が科されることが定められている。

※ 環境省のホームページより入手可能なもの同法律の和訳を参考に記載。
表 3-10 基準を超えた場合の刑罰

<table>
<thead>
<tr>
<th>対象者、違反内容</th>
<th>罰則</th>
<th>該当条項</th>
</tr>
</thead>
<tbody>
<tr>
<td>故意に、基準もしくは基準を超え、屋外大気質、水質、環境の汚染を引き起こす行為を行った全ての者</td>
<td>3～10年 Rp. 3,000 ～Rp.10,000</td>
<td>第98条 第1項</td>
</tr>
<tr>
<td>人に損害を与え、または人の健康を危険にさらしている場合</td>
<td>4～12年 Rp. 4,000 ～Rp.12,000</td>
<td>第98条 第2項</td>
</tr>
<tr>
<td>怪我または死亡の原因を引き起こしている場合</td>
<td>5～15年 Rp. 5,000 ～Rp.15,000</td>
<td>第98条 第3項</td>
</tr>
<tr>
<td>過失により故意に、基準もしくは基準を超え、屋外大気質、水質、環境の汚染を引き起こす行為を行った全ての者</td>
<td>1～3年 Rp. 1,000 ～Rp.3,000</td>
<td>第99条 第1項</td>
</tr>
<tr>
<td>人に損害を与え、または人の健康を危険にさらしている場合</td>
<td>2～6年 Rp. 2,000 ～Rp.6,000</td>
<td>第99条 第2項</td>
</tr>
<tr>
<td>怪我または死亡の原因を引き起こしている場合</td>
<td>3～9年 Rp. 3,000 ～Rp.9,000</td>
<td>第99条 第3項</td>
</tr>
<tr>
<td>水質基準、排出基準、環境基準に違反した者</td>
<td>～3年 Rp. 3,000</td>
<td>第100条</td>
</tr>
</tbody>
</table>

出所）法律2009年第32号に基づきJICA調査団作成

また、環境汚染の防止義務を有する事業者や活動のほか、法律と環境許可に関わる、人の生命に係る環境汚染または損失を引き起こしている事業もしくは活動の責任者を管理していない全ての当事者に対しても、以下の刑罰が科されることが定められている（第112条）。

・ 懲役：1～3年
・ 罰金：最大 Rp.3,000,000,000

従って、不適切な生活排水処理は人の生命を脅かす、あるいは脅かす環境汚染を引き起こす可能性がある。このことから、生活排水処理事業者あるいは活動を適切に監理していない当事者には同等の罰則が科される。

さらに、事象者や活動、監督義務を有する当局も含め、何人も、環境保護及び管理に係る監理、法施行に関する必要となる情報で、偽の情報、誤解を招く情報、正確でない情報、無効な情報、虚偽の情報を提供した全ての者は、以下の刑罰が科されることが定められている（第113条）。

・ 懲役：最長1年
・ 罰金：最大 Rp. 1,000,000,000

6 環境省のホームページより入手可能、同法律の和訳を参考に記載。
3 - 3 - 3. 下水・し尿処理に関連する料金徴収制度
(1) 下水処理料金

ジャカルタ首都特別州における下水処理は、ジャカルタ首都特別州水資源局（Dinas Sumber Daya Air : DSDA）と PD Pal Jaya の分業、または、協業によって行われる。

DSDA はジャカルタ首都特別州の行政組織であり、公共事業として下水処理事業を行っている。DSDA は下水処理・管理に必要とされる活動の計画、予算を立て、ジャカルタ州政府の公的資金を活用して、下水処理設備の建設、運営、管理等の様々な活動を行っている。ただし、下水処理システムの計画、建設にあたっては、PD Pal Jaya と協業することも可能である。

一方、PD Pal Jaya は、「ジャカルタ首都特別州令 2014 年第 7 号」の下、同州の下水管理サービスの提供により、州政府の地域の福祉向上政策の実現を支援する組織として位置づけられた公社である。PD Pal Jaya は、行政組織あるいは民間事業者から委託を受けて生活排水処理設備の運転・管理を行うほか、下水処理設備の建設も行っている。PD Pal Jaya が運転・管理を行う下水処理設備では、以下のような料金徴収のシステムが適用されている。

ア．料金体系

PD Pal Jaya は、「ジャカルタ州知事令 2012 年第 991 号」に基づき、下水処理料金と公共の下水道管への接続料を徴収している。

料金体系は、住宅、小規模商業、大規模商業、公共、産業の 5 つの区分に分かれており、住宅は電力消費量、商業並びに公共は建物の特長や業務内容、産業は規模に応じて小区分が設定されている。

この区分に基づき、下水処理料金は各建物の床面積 (㎡) あたり・月単位の料金が定められている。下水道管接続時に一括のみ徴収される下水道管接続料は、住宅は各戸単位で、その他は各施設の床面積（㎡）単位の料金が定められている。

下水処理料金並びに下水道管接続料は表３・11の通り。

7JICA の「ジャカルタにおける下水計画策定能力向上プロジェクト」を担当する。DSDA 駐在の JICA 専門家からは、地域によっては、下水管に不具合（詰り等）がある場合には自費で修理をしており、その金額が高額（1,000〜2,000 円/回）であることから、一定の下水処理料の支払により DSDA が下水システム管理をする仕組みに賛同する人もいるが、DSDA では料金徴収体系の整備は今後の課題となっている状況が共有された。
8 本段落記載内容は、2017 年 2 月 21 日にジャカルタ首都特別州水資源局 (Dinas Sumber Daya Air) に駐在する JICA 専門家との面会時に入手した情報に拠る。また、本調査実施時点では、DSDA の役割は、2017 年 1 月の組織改正前の DSDA の前身であるジャカルタ首都特別州水資源局（Dinas Tata Air: DTA）とほぼ同等であることを DSDA への聞き取り調査で確認していたことから、DTA の役割をと定めた「ジャカルタ首都特別州知事令 2014 年第 257 号」の第 4 部（第 12 条から第 16 条）も一部参考にしている。
<table>
<thead>
<tr>
<th>No.</th>
<th>区分</th>
<th>下水処理費（Rp./m³/月）</th>
<th>下水道管接続料単位</th>
<th>Rp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>住宅</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>住宅 タイプA（電力消費量〜450W）</td>
<td>131</td>
<td>1戸あたり</td>
<td>10,000</td>
</tr>
<tr>
<td>2</td>
<td>住宅 タイプB（電力消費量〜900W）</td>
<td>184</td>
<td>1戸あたり</td>
<td>10,000</td>
</tr>
<tr>
<td>3</td>
<td>住宅 タイプC（電力消費量〜1,300W）</td>
<td>236</td>
<td>1戸あたり</td>
<td>110,000</td>
</tr>
<tr>
<td>4</td>
<td>住宅 タイプD（電力消費量 2,200W 以上）</td>
<td>289</td>
<td>1戸あたり</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>小規模商業施設</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>店舗</td>
<td>525</td>
<td>1m³あたり</td>
<td>1,000</td>
</tr>
<tr>
<td>2</td>
<td>事業所（3階建てまでのビル）</td>
<td>525</td>
<td>1m³あたり</td>
<td>1,000</td>
</tr>
<tr>
<td>3</td>
<td>会館（ホール）</td>
<td>525</td>
<td>1m³あたり</td>
<td>1,000</td>
</tr>
<tr>
<td>4</td>
<td>理容業</td>
<td>525</td>
<td>1m³あたり</td>
<td>1,000</td>
</tr>
<tr>
<td>5</td>
<td>小規模飲食店/飲食店</td>
<td>525</td>
<td>1m³あたり</td>
<td>1,500</td>
</tr>
<tr>
<td>6</td>
<td>旅館</td>
<td>525</td>
<td>1m³あたり</td>
<td>1,500</td>
</tr>
<tr>
<td>7</td>
<td>教育機関</td>
<td>525</td>
<td>1m³あたり</td>
<td>1,500</td>
</tr>
<tr>
<td>8</td>
<td>その他の小規模商業（低価格賃貸アパート、賃貸住宅を含む）</td>
<td>525</td>
<td>1m³あたり</td>
<td>1,500</td>
</tr>
<tr>
<td>III</td>
<td>大規模商業施設</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>高層オフィスビル</td>
<td>578</td>
<td>1m³あたり</td>
<td>1,750</td>
</tr>
<tr>
<td>2</td>
<td>飲食店やジムを含む高層オフィスビル</td>
<td>604</td>
<td>1m³あたり</td>
<td>1,925</td>
</tr>
<tr>
<td>3</td>
<td>ショッピングセンター/モール/スーパーマーケット/ショールーム</td>
<td>604</td>
<td>1m³あたり</td>
<td>1,925</td>
</tr>
<tr>
<td>4</td>
<td>1つ星、2つ星、3つ星ホテル</td>
<td>604</td>
<td>1m³あたり</td>
<td>1,925</td>
</tr>
<tr>
<td>5</td>
<td>低価格アパート</td>
<td>604</td>
<td>1m³あたり</td>
<td>1,925</td>
</tr>
<tr>
<td>6</td>
<td>4つ星ホテル</td>
<td>714</td>
<td>1m³あたり</td>
<td>2,625</td>
</tr>
<tr>
<td>7</td>
<td>集合住宅（アパート、高層マンション）</td>
<td>714</td>
<td>1m³あたり</td>
<td>2,625</td>
</tr>
<tr>
<td>8</td>
<td>娛楽施設/大規模飲食店/軽食堂</td>
<td>840</td>
<td>1m³あたり</td>
<td>2,800</td>
</tr>
<tr>
<td>9</td>
<td>民間医療機関</td>
<td>840</td>
<td>1m³あたり</td>
<td>2,800</td>
</tr>
<tr>
<td>10</td>
<td>5つ星ホテル</td>
<td>840</td>
<td>1m³あたり</td>
<td>2,800</td>
</tr>
<tr>
<td>11</td>
<td>その他の大規模商業施設</td>
<td>840</td>
<td>1m³あたり</td>
<td>2,800</td>
</tr>
<tr>
<td>IV</td>
<td>公共施設</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>宗教施設</td>
<td>53</td>
<td>1m³あたり</td>
<td>550</td>
</tr>
<tr>
<td>2</td>
<td>公立学校</td>
<td>263</td>
<td>1m³あたり</td>
<td>850</td>
</tr>
<tr>
<td>3</td>
<td>公共医療施設</td>
<td>263</td>
<td>1m³あたり</td>
<td>1,100</td>
</tr>
<tr>
<td>4</td>
<td>政府機関</td>
<td>315</td>
<td>1m³あたり</td>
<td>1,100</td>
</tr>
<tr>
<td>5</td>
<td>その他の機関</td>
<td>315</td>
<td>1m³あたり</td>
<td>1,100</td>
</tr>
<tr>
<td>6</td>
<td>政府系医療機関</td>
<td>315</td>
<td>1m³あたり</td>
<td>1,500</td>
</tr>
<tr>
<td>7</td>
<td>診療所</td>
<td>315</td>
<td>1m³あたり</td>
<td>1,500</td>
</tr>
<tr>
<td>8</td>
<td>その他の公共機関</td>
<td>315</td>
<td>1m³あたり</td>
<td>1,500</td>
</tr>
<tr>
<td>V</td>
<td>産業</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>小規模産業</td>
<td>548</td>
<td>1m³あたり</td>
<td>1,000</td>
</tr>
<tr>
<td>2</td>
<td>中規模産業</td>
<td>548</td>
<td>1m³あたり</td>
<td>4,200</td>
</tr>
<tr>
<td>3</td>
<td>大規模産業</td>
<td>788</td>
<td>1m³あたり</td>
<td>4,300</td>
</tr>
</tbody>
</table>

出所）ジャカルタ首都特別州知事令 2012年 第991号より JICA 調査団作成
イ．下水処理料金の徴収方法
PD Pal Jaya から各月の下水処理料金の請求書が発行され、利用者は翌月に支払う。
支払の方法は、以下のいずれかより選択することができる。
・ 銀行振り込み
・ PD Pal Jaya の事務所にて現金払い

ウ．下水処理料金徴収の現状
PD Pal Jaya への電話による聞き取り調査によると、2016 年の下水処理料金徴収状況は表
3-12 の通りであり、比較的高い徴収率であることが伺える。

表 3-12 ジャカルタ特別州内 PD Pal Jaya による下水処理料金徴収の状況

<table>
<thead>
<tr>
<th>区分</th>
<th>支払率(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>住宅</td>
<td>80</td>
</tr>
<tr>
<td>非住宅</td>
<td>95</td>
</tr>
</tbody>
</table>

出所）PD Pal Jayaへの聞き取りによりJICA調査団作成

支払が滞納している場合には、PD Pal Jaya から督促状が送られ、料金の 2%/月の滞納料金とともに支払うことが求められている。
2 ヶ月以内に支払が完了しなかった場合には、PD Pal Jaya により、検査孔が閉鎖される。
なお、表 3-12 の支払い率は、督促状受け取り後の支払率。

（2）し尿・下水汚泥引抜料並びに汚泥処理委託料
ア．料金体系
下水処理が行われていない地域、建物においては、原則としてセブティック・タンク（不
敗槽）が各戸・施設に設置されている。セブティック・タンクに溜まったし尿汚泥は、PD Pal
Jaya、あるいは民間のし尿回収業者により引き抜かれ、PD Pal Jaya が運営するし尿処理
場にて処理される。また、商業施設等に下水処理設備が設置されている場合には、その設
備の汚泥も、同様の流れで処理される。
ジャカルタ首都特別州では、これに係る費用が表 3-13 のように定められている。
表3-13 ジャカルタ首都特別州のし尿・汚泥の回収料金と処理委託料金

<table>
<thead>
<tr>
<th>No.</th>
<th>サービスの内容</th>
<th>回収料金（Rp.）</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>住宅</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.1</td>
<td>依頼による回収（都度）</td>
<td>150,000/m³</td>
<td>平日・休日料金同額 VAT10%を含まない。</td>
</tr>
<tr>
<td>A.2</td>
<td>契約による回収（LLTT契約、契約内容に応じて回収）</td>
<td>登録料 330,000 1ヶ月あたりの回収料金 16,500 別途依頼による回収料金 330,000</td>
<td>3ヶ月で最大3つの設備に対応</td>
</tr>
<tr>
<td>B</td>
<td>住宅以外</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>汚泥一時保管サービス</td>
<td>100,000/m³</td>
<td>低所得者居住地域へのサービス平时営業時間のみ対応可</td>
</tr>
</tbody>
</table>

2. し尿・汚泥回収業者がPD PAL JAYAに支払う汚泥処理委託料金

| 一律 | 25,000/m³ | VAT10%を含まない |

出所）PD Pal Jaya 社長決定 2016年第13号よりJICA調査団作成

一方、集落単位で設置されている共同の下水処理設備については、汚泥回収料金は、各施設の運営会社とPD Pal Jayaとの間で個別に契約されることとなっている。

イ．料金徴収方法

- 汚泥回収料金：各戸、施設、下水処理施設の運営者は、現金、あるいは銀行振込により、PD Pal Jayaや民間し尿・汚泥回収業者に料金を支払う。
- 汚泥処理委託料：民間し尿・汚泥回収業者は、以下の2つの方法のいずれかにより、PD Pal Jayaに委託料を支払う。
 1. 民間回収業者は、し尿処理場の到着時に、現金（Rp. 25,000）を支払う。
 2. 民間回収業者は、PD Pal Jayaから送付された1カ月分の委託料の合計にかかる請求書に基づき、銀行振込で支払う。
3-3-4．下水処理設備に関する技術認定・認証制度
(1) 排水処理設備製造認定
公共事業として建設される下水処理場に導入される設備の技術は、「排水処理設備製造認定」を取得したものでなくてはならない。本認定は、技術自体の検証より、むしろ、その技術が、定められた下水処理水の放流基準を満たすものであるかどうかに主眼が置かれている。
以下、当該認定の概要を示す。9

ア．認定機関
公共事業国民住宅省住宅研究開発センター（Pusat Penelitian dan Pengembangan Pemukiman（PUSKIM））[所在地：西ジャワ州バンドン市]

イ．当該技術が遵守すべき基準
生活排水の水質基準に関する環境林業大臣令 2016 年第 68 号、ならびに、地方政府による規制

ウ．認定申請の手順
（ア）手順 1：申請書類の準備・提出
本認定の取得を希望する者は、以下の 6 つに関する書類を、インドネシア語あるいは英語で準備し、提出することが求められている。提出書類の詳細は表 3-14 を参照。
I 排水処理施設製造認定用の申請書
II 審査対象となる排水処理施設の設計
III 排水処理施設の製造状況
IV 排水処理施設の運転・管理方法
V 審査対象となる既設の排水処理施設に関する審査の補助情報（最低 2 ヶ所）
VI 排水処理施設に関する業務実績

<table>
<thead>
<tr>
<th>表 3-14</th>
<th>排水処理設備製造認定の申請に当たって必要な書類の一覧</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>排水処理施設製造認定用の申請書</td>
</tr>
<tr>
<td></td>
<td>宛 先：Kepala Puslitbang Perumahan dan Pemukiman Kementrian PUPR 住宅・人間関住研究所所長 公共事業・国民住宅省 Jln. Panyaungan Cileunyi Wetan, Kabupaten Bandung 40393 Tel: 022 7798393</td>
</tr>
</tbody>
</table>

9 本項目の記載内容は、2016年11月21日に公共事業国民住宅省住宅開発研究センター（Pusat Penelitian dan Pengembangan Pemukiman（PUSKIM））に対して聞き取り調査を行った際に入手した情報に拠る。
<table>
<thead>
<tr>
<th>"Ⅱ" 審査対象となる排水処理施設の技術設計</th>
<th>Fax 022 7798392</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 設計基準と技術図面</td>
<td>データは印刷物、電子データ及び写真</td>
</tr>
<tr>
<td>2. 排水処理施設に使用される電気機器／機械</td>
<td></td>
</tr>
<tr>
<td>a. 素材の仕様／品質検査証明書</td>
<td></td>
</tr>
<tr>
<td>b. ポンプと機械設備の仕様</td>
<td></td>
</tr>
<tr>
<td>c. 発電機と電源の仕様</td>
<td></td>
</tr>
<tr>
<td>d. 配電盤、ワイヤーおよび付属品の仕様</td>
<td></td>
</tr>
<tr>
<td>e. 消費電力と電力分布（設備と電灯）</td>
<td></td>
</tr>
<tr>
<td>f. 配電系統図</td>
<td></td>
</tr>
<tr>
<td>3. 排水処理施設用の建物（技術図面）</td>
<td></td>
</tr>
<tr>
<td>a. 排水処理設備の建物／ユニット式支援装置</td>
<td></td>
</tr>
<tr>
<td>b. 階段、仕切り、基礎など</td>
<td></td>
</tr>
<tr>
<td>c. メタンガス吸収装置（あれば）</td>
<td></td>
</tr>
<tr>
<td>4. 建設された排水処理施設に関して、申請者または他社との協力でのオリジナルデザインであることの供述書</td>
<td>データは印刷物、電子データ及び写真</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>"Ⅲ" 排水処理施設の製造現場</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 所有権（法的）と製造現場のサイズ</td>
<td>データは印刷物、電子データ及び写真</td>
</tr>
<tr>
<td>2. 排水処理施設を建設するための設備</td>
<td></td>
</tr>
<tr>
<td>3. 組織図、人材と技術者の認定証明書</td>
<td></td>
</tr>
<tr>
<td>4. 排水処理施設部品の送付と梱包手順</td>
<td></td>
</tr>
<tr>
<td>5. 製造現場での漏れテスト、構造テストなど</td>
<td>その他</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>"Ⅳ" 排水処理施設の運転・管理方法</th>
<th>データは印刷物、電子データ及び写真。水質データは表形式</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 運転・管理マニュアル</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>"Ⅴ" 審査対象となる既設の排水処理施設に関する審査の補助情報（最低２ヶ所）</th>
<th>環境森林大臣令 No68/2016と地方規定に基づく</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 所在地</td>
<td>環境森林大臣令 No68/2016と地方規定に基づく</td>
</tr>
<tr>
<td>2. 設立と運用開始年</td>
<td>例、SNF RP または関連規定に基づく</td>
</tr>
<tr>
<td>3. 排水処理施設の最大処理能力</td>
<td>一覧表</td>
</tr>
<tr>
<td>4. 管理者</td>
<td></td>
</tr>
<tr>
<td>5. 原水と処理された水質試験結果</td>
<td></td>
</tr>
<tr>
<td>6. 排水処理施設素材の試験結果</td>
<td></td>
</tr>
<tr>
<td>7. 付帯機能と建物</td>
<td></td>
</tr>
</tbody>
</table>

出所）PUSKIM 提供資料に基づき JICA 調査団作成

（イ）手順 2：当該下水処理技術に関する説明
技術保有者が PUSKIM の認定担当者に対して、審査の対象となる排水処理施設に関する説明（プレゼンテーション）を行う。
（ウ）手順３：契約締結
審査の内容の同意、審査費用支払い並びに誠実な情報提供等に対する誓約として、PUSKIM と技術保有者が契約を締結する。

（エ）手順４：審査対象施設における現場検証
PUSKIM の認証担当者（3 名程度）が、既存の排水処理施設 2 ヶ所に対して現場検証を行う。現場検証の期間は 1 週間程度であり、1 回 3 回程度（下水量の多い時間帯）の採水を行う。現場検証の詳細については、契約書に記載される。水試料は、適切な資格を有した外部の検査機関によって分析される。

（オ）手順５：排水処理施設製造認定の交付
審査を合格した技術保有者には、排水処理施設製造認定が交付される。

エ．所要期間
申請書類の提出（手順 1）から技術認定の交付（手順 5）まで、約 2 ヶ月程度が必要。

オ．審査費用
審査にあたって、申請者は総額 Rp.50,000,000〜100,000,000 程度（約 450,000〜900,000 円）の費用を負担する必要がある。内訳は以下の通り。
・ 審査費用：Rp.25,000,000（約 250,000 円）
・ 現場検証に必要な PUSKIM 職員 3 名の旅費 1 週間分（起点：西ジャワ州バンドン市）
・ 審査対象施設における水試料の、外部分析機関に対する検査外注費用

カ．認定の有効期間：4 年
有効期間中に基準値がより厳格になる等、審査の根拠となる法規制に変更があった場合には、該当審査項目について改めて検証が行われ、認定継続の是非が再審査される。
当初の認定取得時において、変更のあった要因事項を既に満たしていた場合には、認定は自動的に継続される。
認定の有効期間が失効した後は、再度審査が行われ、認定の継続の可否が判断される。

キ．本認定に関する実績
PUSKIM への聞き取り調査時点（2016 年 11 月 21 日時点）では、3 つの設備が既に認定を受けていることが把握できた。
いずれの申請者もインドネシア企業であり、外国企業の申請者はまだ出していないことも確認した。なお、認定済み技術については公開されておらず、聞き取り調査時において、PUSKIM の担当者より、審査に使用された書類の閲覧を受けた。
（２）産業排水処理技術に対する認証制度
産業排水処理を目的とした技術を対象とした認証制度である。技術保有者が事業を行うにあたり、本認証の取得は必ずしも必要とされていない。しかし、国が発行する技術認証であることから、その取得により当該技術の採用、普及を促進することが期待できる。
以下、その概要を示す。

ア．認証機関
公共事業国民住宅省住宅研究開発センター（Pusat Penelitian dan Pengembangan Pemukiman（PUSKIM））（所在地：西ジャワ州バンドン市）

イ．当該技術が遵守すべき基準
産業排水の水質基準に関する環境大臣令 2014 年第 5 号

その他、申請手続き等の詳細については、PUSKIM からの資料提供を受けて確認を行う。

（３）環境調和型技術のための性能認証（Pedoman Persyaratan Teknis Verifikasi Teknologi Ramah Lingkungan）
本認証制度は、分野を問わず、環境調和型技術全般を対象としており、技術保有者より、当該技術の効率、効果などの申告を受けて、申告事項に対して認証が行われるものである。
制度の狙いは、インドネシア国内における環境配慮型技術の普及促進や技術革新、並びに技術保有者と技術利用者の橋渡しを支援することである。
したがって、技術保有者が、当該技術をもとに事業を行うにあたって、本認証の取得は必ずしも必要とはされていないが、技術保有者と技術利用者の便益を勘案して、技術提供者には、その認証の取得が推奨されている。

以下、認証の取得手続きの概要を示す。⑩

ア．認証機関
環境林業省環境林業技術標準化センター（所在地：ジャカルタ）

イ．申請手順
（ア）手順 1：申請書類の提出
本認証の取得を希望する者は、所定の申請用紙に技術・機器に関する情報を記載し、認証機関に提出する。
申請用紙は図 3 - 3 の通り。

⑩ 冊子"PEDOMAN PERSYARATAN TEKNIS VERIFIKASI TEKNOLOGI RAMAH LINGKUNGAN"より引用。
(イ)手順 2：事前審査

申請用紙に記載された技術内容について確認、討議が行われる。事前審査には、技術委員会、専門協議会の代表、事務局が参加する。

(ウ)手順 3：本審査

技術保有者が、専門家協議会並びに技術委員会の前席で当該技術について説明（プレゼンテーション）を行う。この後、専門家協議会、並びに技術委員会が当該技術について科学的根拠からのコメントを行う。

技術保有者による説明の後、専門家協議会で審査を行う。この後、専門家協議会と技術委員会が協議を行った上で、審査結果用紙が記入され、認証審査結果が決定する。

最後に、認定審査結果が発表される。

(エ)手順 4：環境調和型技術・機器の登録

審査で合格した技術・機器は、認証を受けた環境調和型技術・機器として登録される。

本事業で環境林業省に聞き取り調査を実施した時点で、当該技術・機器の情報は当該省内でのみで管理されているとの事であったが、将来的には、関連する省庁と共用され、公共事業等に広く活用される情報とする構想があることが説明された。

11 環境林業省環境林業技術標準化センターには、2016 年 10 月 20 日に訪問。
３－３－５．JICA中小企業海外展開支援事業におけるインドネシア政府への資産譲渡の仕組み

本案件化調査の後、普及実証事業にてバイオアルシート実験設備をODAで建設することを仮定した場合、実証設備が最終的にジャカルタ首都特別州政府に運用・管理されるために必要なプロセスを以下のように確認した。

① JICAとインドネシア政府の間で、施設・機材の引渡しに関する覚書（BAST）の締結
ODAを活用し、日本国の資産として建設・購入された施設・機材をインドネシアに引き渡すにあたって、インドネシア政府が物品の供与を受ける際に定めている「BAST（Berita Acara Serah Terima/バスト/ベーアーセステー）」の手続きに準じる必要がある。BASTは「引渡しに関する覚書」の意であり、インドネシア側が指定するフォーマットに施設・機材の引渡し側と受取側双方が署名し、それに基づいてインドネシア側で資産登録等、必要な手続きを行う。BASTに記載される内容は、以下の通りである。
・ 引渡し側に引き受け側、各々の責任者とその役職名
・ 引渡しに際しての合意事項
・ 引渡し物品並びにその価格

署名者は適切な政府機関である必要があり、本案件化調査の継続として申請を予定している普及・実証事業については、日本側はJICA、インドネシア側は公共事業・国民住宅省（PUPR）となることが想定される。

② 日本政府からインドネシア政府への施設・機材の引渡し
対象となる施設・機材がインドネシア政府により検収され、合格の後、インドネシア政府に引き渡される。その後、インドネシア国内のプロセスに則り、必要に応じ、中央政府から地方政府等の他の政府機関へ引き渡される。

なお、日本政府からインドネシアへの施設・機材の引渡し時期は、その対象により以下のように異なる。
・ 「施設」の場合：施設完成後速やかに引渡し
・ 「機材」の場合：普及・実証事業に引渡し

ただし、普及・実証事業期間中、同事業の採択を受けた日本企業は、既にインドネシア側に譲渡され、インドネシアの資産となった「施設」を用いて実証活動を行うこととなる。したがって、当該施設の「所有権」のみを譲渡し、「使用権」は事業終了までJICAが保有するよう、普及・実証事業開始にあたって事業実施内容の行為事項としてJICAとPUPRが取り交わす覚書（Minutes of Meeting、M/M）に記述する必要がある。
以上を勘案すると、バイオアルシーの場合、「施設」とみなされる可能性が高いため、
その際の資産（施設）引渡しのプロセスは図3-4のようになると想定される。

図 3-4 普及・実証事業における資産引渡しの流れ（バイオアルシーの場合）

出所）日本アルシー
3-4. 運用の実態とバイオアルシー法の適合性分析

3-4-1. ジャカルタにおける生活排水処理、屎尿処理の実態
2015年にレビューされた「Jakarta Sewerage Development Review of Master Plan Zone1 to Zone10」によると、直近の調査結果として排水の90％以上が河川や海へ直接流れ込んでいるが、または、セプティックタンクを通しながらも十分に処理がなされないまま、地下へ流れ込んでいると指摘している。下水道設備の普及を標榜しつつも、運用管理やメンテナンスの課題が改めて浮き彫りになったと言える。
一方、その普及に関しても、2012年のマスタープランで最終的に目標とされていたオフサイト率80％も現時点では、オフサイト率40％（その他、Communal / Modular率25％＋オンサイト率10％の全体75％の整備率）の下水道整備目標となっており、こちらもオフサイトとして集中処理設備の推進の難しさを改めて浮き彫りにする形となった。

本調査を通し、その要因と考えられる実態が明らかになった。

（１）技術者不在のメンテナンス（Malakasari下水処理場を例に）
Dinas Tata Airが運営管理を実施しているMalakasariの下水処理場は東ジャカルタに位置する下水処理場であり、①Aerobe AnaerobeおよびBio mediaによる処理（1996年に設置。処理能力200㎥/日）、②Bio Activatorによる処理（2006年に設置。処理能力200㎥/日）の2つの処理設備を有している。500世帯を対象とした設備として、合計400㎥/日の処理能力を有する。対象500世帯のうち、概ね60〜70％程度は管渠が繋がっているとされている。
しかしながら、現状では、人件費として月額3.1百万ルピア／人×4人の管理費が予算計上されているにも関わらず、設備設置後、15年以上汚泥除去を行われておらず、管渠が詰まり汚水の流入が制限されているのみならず、嫌気槽においても十分な処理が行われていない実態が存在していた。Dinas Tata Airによると人員は配置しているものの、電気系統の管理や排除などに留まっており、汚泥除去や活性汚泥の管理などが十分にできるだけの技術者を配置できていないとのことであった。
後述する徴収費用を合わせて、技術者の配置も含めた運用管理まで十分な体制が整っていないことが浮き彫りになった。

（２）徴収費用の限界
「3-3. 下水・し尿処理に関連する料金徴収制度」にて議論した通り、現時点で下水道料金の徴収に関する法整備はPD Pal Jayaにおける徴収に留まっている。
PD Pal Jayaとの協議においても、現時点で徴収できる費用に限界があること、企業として存続するためには費用を抑えたメンテナンス方法や設備を模索することの重要性が指摘された。

（３）排水基準の不十分さ
環境大臣令2016年第68号で設定された最新の排水基準において、BODは30mg/Lを基準とされており、2012年マスタープランの2020年の目標値であるBOD33mg/Lと比較す
ると高い基準が設定されている。
しかしながら、BOD 30mg/L は未だ魚が住めないレベルの排水基準であり、環境への影響を考えると、より安全な高い基準が求められているのが実態である。

（４）土地不足／資金不足に伴う土地収用の遅延
「Jakarta Sewerage Development Review of Master Plan Zone1 to Zone10（2015年）」によると、管渠ならびに排水処理施設にかかる土地収用への課題が指摘されている。その結果として、2012年マスタープランよりも Communal / Modular 率 25％＋オンサイト率 10％が高くなっている模様である。

３－４－2．バイオアルシの導入ニーズと活用可能性
第２章にて議論した通り、バイオアルシ法は以下のような特長を有している。また、上記の通り、オンサイト率（本製品・技術の想定対象）そのため、前項にて議論した課題に対応することが可能であり、導入ニーズは高い。

● 狭い敷地でも大きな処理能力：
通常の活性汚泥法では BOD 0.2kg/日・㎥以下の処理能力であるのに対し、本技術では BOD 2～5kg/日・㎥の容積負荷に対応
⇒土地収用に係る課題対応可能
⇒高い水準の排水基準にも対応可能であり、環境影響負荷も軽減

● 前処理関連費用の削減：
前処理薬品が不要。かつ、前処理汚泥が発生しない
⇒費用を削減可能であり、継続的な運用・メンテナンスの実現に寄与

● 余剰汚泥の発生抑制による備品・設備関連費用・人件費の削減：
余剰汚泥の脱水設備や脱水用凝集剤添加設備、それに付随する薬品が不要であり、メンテナンス・運転に必要な要因を現場に駐在させる必要がない
⇒費用を削減可能であり、継続的な運用・メンテナンスの実現に寄与
⇒技術者の駐在が不要となり、技術的側面でもメンテナンスの実現に寄与

● 水量変動や負荷変動に強い安定的な処理能力：
嫌気槽→好気槽→沈殿槽→嫌気槽を立体的に1槽に集約し、曝気風力により安定した循環流を形成させたうえで嫌気部分に原水を入れるため、通常の押し出し流方式と比較して、3倍程度の水量変動や不可変動ならば吸収することが可能
⇒技術者の駐在が不要となり、技術的側面でもメンテナンスの実現に寄与

62
3-5．バイオアルシー観察結果
調査により明確にってきたインドネシアにおける下水処理の実態に対し、バイオアルシーの活用可能性について理解を促進するため、インドネシア側関係者を対象としたバイオアルシーの観察を2回実施した。これにより、関係者のバイオアルシーの特長、視察までに提案していた実証設備案に対する理解を深めるとともに、普及・実証事業の共同実施への意欲を高めることができた。
視察の詳細は以下の通り。

3-5-1．目的
インドネシア側関係者のバイオアルシーに対する理解向上

3-5-2．訪問先及び設置されているバイオアルシーの概要
(1) 訪問先
PT Indofood Tsukishima Sukses Makmur
（住所：Jl. Industri 1, Tanjung Priok, North Jakarta, Indonesia）

・3-4-2項に記載したバイオアルシーの特長は、工業排水処理、下水処理のいずれの場合でも同等であり、バイオアルシーに対する理解向上の一例として、本工場のバイオアルシーを視察した。

・視察実施時点において、インドネシアに設置されているバイオアルシーは本基のみである。ジャカルタ内で視察を実施することにより、より多くの関係者のバイオアルシーへの理解を高めることができ、本事業における円滑な議論の推進、並びに、次の普及・実証事業につながる有益な議論の醸成がより容易になる効果を期待した。

(2) 設置されているバイオアルシーの概要
■設置時期：2015年6月建設開始、同年10月31日完成
■運転開始時期：2016年2月
■設備概要
微生物処理設備（処理槽容積160m³、直径6m・高さ6.5mの円筒状）
■原水（排水）の書類
バタークリーム製造排水（成分：バーム油、高濃度液糖）
■処理能力：40m³/日（実際の原水流入量：20〜30m³/日）

表3-15 視察先バイオアルシーの処理能力

<table>
<thead>
<tr>
<th></th>
<th>原水流入負荷</th>
<th>処理水質</th>
<th>放流水質基準</th>
</tr>
</thead>
<tbody>
<tr>
<td>COD₉₀（mg/L）</td>
<td>2,000〜10,000</td>
<td>20〜80</td>
<td>100</td>
</tr>
<tr>
<td>油脂（mg/L）</td>
<td>200</td>
<td>0.5以下</td>
<td>3</td>
</tr>
</tbody>
</table>

出所）日本アルシー
3 - 5 - 3．実施概要
（1）第1回目視察
■ 日時：2017年1月27日（金）10:30〜12:00
■ 参加者:
- DSDA（計8名）
 - 下水施設開発改善セクション長 Ms. Siti Nurjannah
 - 同セクションスタッフ Mr. Satono, Mr. Dede Setiawan, Ms. Dwi Pangestuti
 - 計画セクションスタッフ Mr. Hari Trisdihsanto, Ms. Lailatus Sianmi
 - JICA専門家 松本実氏、及び秘書
- PT. Indofood Tuskishima Sukses Makmur（ITSM）（計5名）
 - スタッフ Mr. Aranda, スタッフ Mr. Sakti
 - 宝田 司氏、鈴木 隆夫氏、棚瀬 孝一氏
- JICA調査団（計8名）
 - 日本アルシー株式会社 代表取締役社長 藤野清治
 - PT. MU Research and Consulting Indonesia
 取締役 中島猛、シニアコンサルタント 中細真理子
 シニアコンサルタント Mr. Abdul Rahman, Mr. Bagus Anugrah
 - 公益財団法人国際環境技術移転センター 地球環境部事業企画課 黒田直子
 - コンサルタント Mr. Pulung Bimasakti, Mr. Setyo Duhkito

■ 概要
- ITSMの会議室において、日本アルシー株式会社よりバイオアルシーの特長、ならびにITSMにおけるバイオアルシーの処理性能について説明を行った。
- 説明の後、DSDAからの参加者は、バイオアルシーを視察し、バイオアルシータンクの上部からシステムの全体像やタンクの構造を確認したほか、バイオアルーシステムを構成する各設備とその役割や特性に関する説明を受けた。
- 本視察において、以下のようにDSDAが質問し、日本アルシーが回答した。

Q1：Malakasariに設置を想定しているバイオアルシーの大きさはどのくらいか。
A1：ITSMと同様、直径6m、高さ6.5m

Q2：運転に必要な消費電力と電力料金はどのくらいか。
A2：20kw、Rp. 11,000,000/月

Q3：モーター音が気になる場合、対処方法はあるか。
A3：設置場所をタンク下部等に変更することで対応可能。

Q4：原水はpH調整槽に直接入れるのか。
A4：原水は直接pH調整槽で6〜8の間で調整され、油水分離槽を経て前曝気槽に入れられる。

Q5：原水が前曝気槽に入ると色が茶色になるのはなぜか。
A5：前曝気槽にいるバクテリアにより色が変わる。

Q6：バイオアルシーや使用している微生物はどのようなものか。
A6：好気性微生物と嫌気性微生物の2種類を使用している。

(2) 第2回目視察
■日時：2017年2月20日（月）10:30～12:00
■参加者：
- DSDA（計8名）
 - 原水・上水・下水部長 Mr. Eko Gumelar Susanto, ST, MsE
 - 下水施設開発改善セクション長 Ms. Siti Nurjannah
 - 同セクションスタッフ Mr. Dede Satiawan など6名
- PT. Indofood Tuskishima Sukses Makmur（ITSM）（計5名）
 - 工場長 Mr. Hans、スタッフ Mr. Aranda、スタッフ Mr. Sakti
 - 宝田 司氏、棚瀬 孝一氏
- JICA調査団（計7名）
 - 日本アルシー株式会社 取締役社長 藤野清治
 - PT. MU Research and Consulting Indonesia
 - 取締役 中島猛、シニアコンサルタント 中嶋真理子、Mr. Bagus Anugrah
 - 公益財団法人国際環境技術移転センター 黒田直子
 - コンサルタント Mr. Pulung Bimasakti、Mr. Setyo Duhkito

■概要
- 1回目の視察では、DSDAの中で下水部門の長であり、かつ本事業のキーパーソンであるEko部長の参加が前回予定変更により遅くなかった。このため、同氏のバイオアルシーや重視する理解と視察は必須と考え、2回目の視察を実施した。
- ITSMの会議室において、バイオアルシーや運転状況に関する説明が、ITSMより行われた。
- 説明の後、ITSMの案内により、DSDAからの参加者は、バイオアルシーやを視察し、バイオアルシーやタンクの上部からシステムの全体像やタンクの構造を確認したほか、バイオアルシーやシステムを構成する各設備を確認した。
- 本視察において、DSDAからいくつかの質問があり、視察後に日本アルシーやが答えた。

Q1：尿素は定期的に投入する必要があるのか。
A1：立ち上げ時には栄養分が不足しているため、栄養分として尿素を投入するが、立ち上げ後は投入していない。

Q2：Malakasariに実証装置を導入した場合、排水負荷の変動が大きい場合にはバイオアルシーやの性能が安定しない場合も考えられるのではないか。
A2：ITSMのバイオアルシーやも、負荷変動が大きくなった点には安定している。Malakasariで扱うのは下水であり、ITSMの排水は負荷も高くない。下水の場
合、家庭から大量の食用油が廃棄されることがあり、CODが30mg/Lを超えると、
標準活性汚泥法では汚泥の浮上が発生するが、バイオアルシーはCOD10,000mg/L
の排水も処理可能であり、実際にITSMでも処理している。基本的に下水処理に
いて問題はないと想定しているが、これを実証設備で確かめた。

Q3：汚泥を2回引き抜いたことがあるとITSMから説明があった。
A3：正確には汚泥ではない。1回目は、実際の排水には、当初想定されていなか
った、バイオアルシー内の微生物が分解できない固形分が含まれており、このた
めに発生した堆積物を除去したものである。2回目は、ITSM側の依頼に基づき設
置した処理能力COD(cr) 3,500mg/Lを大幅に超える排水が発生し、希釈すること
なく直接流入する不適切な対応がされたことが原因。時間をかけば自然と微生
物が分解するものであったが、ITSM側より早急に対処したいとの要望であったた
め、除去したものである。説明した通り、当初設定した処理能力COD(cr)3,500mg/L
を大幅に超えたCOD(cr)10,000mg/L以上の流入原水があっても翌日には
COD(cr)150mg/L以下になるなど負荷変動に強いことが証明されている。一方、
普及・実証に向けての運用を考えた場合、生活排水の中には無機物が入る可能性
もあるため、除去装置付ける予定。また、生活排水は工業排水と比べて負荷変
動の幅が小さいため、十分に対応可能である。

Q4：希釈水のために水を注入する必要はあるか。
A4：下水のCOD濃度はバイオアルシーで十分処理できる濃度であり、希釈水は
不要であるので、購入の必要はない。

Q5：Fire Bubble Diffuserを設置していないのに微生物の分散に偏りがないのか。
A5：バイオアルシーは、構造上、平均的に分散している環境が作られている。
3-5-4．バイオアルシー視察結果

視察により、DSDA のバイオアルシーへの理解が高められた。また、視察を行うことで顕在化された疑問点や実証設備への導入時の懸念も新たに挙がったが、これらについて、DSDA と日本アルシーの間で質疑応答をより詳細かつ深いレベルでの情報交換を行うことにより、DSDA のバイオアルシーの特長や機能に対する理解の深化、また、懸念事項への対応策の提示により対応した。これらの結果、懸念の払拭が可能となり、バイオアルシーに対する信頼をさらに高めることができた。

具体的には、本事業における DSDA との最後の会議において、原水・上水・下水
部長 Mr. Eko Gumelar Susanto, ST, MS より以下のコメントが得られた。
・ 視察や質疑応答を通じ、バイオアルシーの特長（高効率、省スペース、余剰汚泥
発生なし、水量・負荷変動に強い、自動運転等）を改めてよく理解した。
・ 本事業当初からバイオアルシーがジャカルタ首都特別州の下水処理に有効である
と考えていたが、視察を通じ、ぜひともバイオアルシーの実証を行って行ってほしいという思いを強くした。
・ DSDA としては、実証事業に向けて下準備も進めており、継続して積極的に協力
していく。

12 2017年2月21日（第2回目視察翌日）
3-6. 参入可能エリアの検討

3-6-1. 集中処理エリア以外の地域の選定
（1）参入可能エリアの検討方針

3-2. ジャカルタ下水道整備計画の現状にて議論した通り、現時点では NCICD の状況も踏まえた上で、改めて下水道整備計画の目標値ならびに推進方法が設定されている。また、Zone 1 ならびに Zone 6 は 2020 年までの短期整備計画として現在、基礎設計・詳細設計のためのコンサルタントの選定（Zone 1）、円借款組成に向けた実店可能性調査（Zone 6）を進めている状況である。

バイオルシー法による下水道整備は、上記における下水道計画の促進に資することも大きな目標の一つであることを踏まえ、以下の検討基準にしたがって参入可能エリアを検討していきたいと考える。

表 3-16 参入エリアの検討基準（市場全体として）

<table>
<thead>
<tr>
<th>検討基準</th>
</tr>
</thead>
</table>
| 1. ジャカルタ下水道計画における集中処理（オフサイト）の対象外となる地域
 ※ただし、Zone1、Zone6 は現在、JICA／インドネシア政府で詳細検討中のため、除外 |
| 2. 管渠、または、パキュームカーなどにて処理設備へ接続可能なこと |
| 3. 新規設置、または、既存設備への増設が可能な場所 |

（2）可能エリアの詳細

現行のマスタープランにおけるオフサイト／オンサイトの大きな区分は、以下の通りとなっている。

現在、KPPIP にて資金調達ならびにオフサイト／オンサイトの詳細も踏まえたレポートを作成しているとの言質を得ている。しかしながら、2016 年 12 月公表を予定していたのが、現時点では未公表であるため、具体的な場所についてはその報告書が公表後、改めて検討を進めることが肝要である。
図 3-5 NCICD ならびに JICA マスタープランレビューを踏まえた目標値
引用）Jakarta Sewage Development Review of Master Plan Zone1 to Zone10

3-6-2. 普及実証に向けたサイトの検討
（1）普及・実証事業におけるパイロットサイトの選定基準
普及・実証事業におけるパイロットサイトの選定に向けては、市場としての参入可能な地域の選定基準に加え、以下の点に留意して検討した。特に、パイロットサイトとして、普及・実証事業を実施していくためには、カウンターパートとの密な協力関係が必須であるため、DSDA（旧 Dinas Tata Air）ならびに PD Pal Jaya からの推薦を基に両社と最適なパイロットサイトについて協議を進めた。
表 3-17 普及・実証事業のパイロットサイト検討に向けた追加基準

<table>
<thead>
<tr>
<th>検討基準</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. カウンターパート（DSDA／PD Pal Jaya）など関係者からの推薦</td>
</tr>
<tr>
<td>1) 設置場所まで管渠または下水配送の仕組がある</td>
</tr>
<tr>
<td>2) バイオアルシーの設置場所を確保できる</td>
</tr>
<tr>
<td>3) 他の処理方法と比較できる</td>
</tr>
<tr>
<td>5. （参考）周辺地域における水質状況</td>
</tr>
</tbody>
</table>

（2）パイロットサイトの検討

ア．DSDA ならびに PD Pal Jaya からの推薦サイト

バイロットサイトの検討に向け、DSDA ならびに PD Pal Jaya と協議を進めるため、DSDA・PD Pal Jaya が現在運営管理している下水処理施設の全体像について確認を行った。その中で検討基準にある通り、1) 設置場所まで管渠または下水配送の仕組があること、2) バイオアルシーの設置場所を確保できること、3) 他の処理方法と比較できること、のいずれも満たすさきとして、DSDA より Malakasari 下水処理場の提案を受けた。PD Pal Jaya より Delta Cakung Apartmen の推薦を受けたものの、2) の設置場所の確保に課題が残る結果となった。

表 3-18 Dinas Tata Air が管理運営している下水処理サイト

<table>
<thead>
<tr>
<th>設備</th>
<th>住所</th>
<th>処理方法</th>
<th>処理能力（㎥/日）</th>
<th>設立年</th>
<th>管理運営</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Sisi Barat</td>
<td>Jaya (Kep.)</td>
<td>1. RBC / Bio Activator</td>
<td>Tahun Operasional</td>
<td>Pejabat Pengendali</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
<td>----------------------------------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>----------------------</td>
</tr>
</tbody>
</table>
2. Bio Activator | 2005
2006 | Dinas Tata Air |

出所）Dinas Sumber Daya Air
<table>
<thead>
<tr>
<th>施設</th>
<th>住所</th>
<th>処理方法</th>
<th>処理能力 m³/日</th>
<th>下水料 Rp.Mn/年</th>
<th>オーナー/管理運営</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Great River</td>
<td>Jl. HR. Rasuna Said Kav. XZ / 1, Jakarta Selatan</td>
<td>Extended Aeration</td>
<td>300</td>
<td>46.1</td>
<td>PD Pal Jaya / 同上</td>
</tr>
<tr>
<td>(Gd. AGRO) [Office]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tinta Pacific Paint</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit #1 [Office]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tinta Pacific Paint</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paint Unit #2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Office]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Aston Slipi</td>
<td>Jl. S. Parman Kav. 22-24, Jakarta Barat</td>
<td>Extended Aeration</td>
<td>500</td>
<td>87.1</td>
<td>PD Pal Jaya / PT. Grahadika Adipurnajasa</td>
</tr>
<tr>
<td>[Office Tower]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit #1 [Rental Flats]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Rusunawa Cengkareng</td>
<td>Blok Aster & Melati, Jakarta Barat</td>
<td>Extended Aeration</td>
<td>120</td>
<td></td>
<td>PD Pal Jaya / 同上</td>
</tr>
<tr>
<td>Unit #2 [Rental Flats]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Delta Cakung</td>
<td>Jl. Penggilingan Raya No. 56 Cakung-Jakarta Timur</td>
<td>Wetland System</td>
<td>40</td>
<td>69.4</td>
<td>PT. Delta Pinang Mas / PD Pal Jaya</td>
</tr>
<tr>
<td>Apartemen [Rental Flats]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

出所）PD Pal Jaya
イ. ジャカルタ各地域における水質状況

ジャカルタ環境管理委員会（DLH、旧名称 BPLHD）では、ジャカルタ州の各地域における環境関連データを毎年収集しており、水質についてはジャカルタ域内の河川及び湖（貯水池を含む）の各指標に基づいた調査を実施している。

2015年の調査結果によると、ジャカルタには主に13の河川が流れており、その支流を含む20の河川及び運河のうち、85のサンプリングロケーションで、2015年の9月、10月、11月にわたって調査を実施した。

図3-6 ジャカルタ域内の河川及び85のモニタリングロケーション
出所）DLH「Laporan SLHD Provinsi DKI Jakarta Tahun 2015」

その結果（表3-20：調査結果抜粋）、モニタリングロケーションのほぼ全ての場所で、総浮遊物質度（濁度、TSS）のインドネシア政府基準値（30mg/L）を超えており、TSSの最大値は2680mg/Lに達するロケーションと時期があったことが判明している。本調査の傾向として、モニタリングのロケーションが街中であればあるほど、汚染度がひどくなることが表れている。
表 3-20 DLH が 2015 年に実施したジャカルタ州河川水質調査結果

<table>
<thead>
<tr>
<th>河川名称</th>
<th>モニタリングロケーション数</th>
<th>TSS 基準値（30mg/L）を超えるロケーション数</th>
<th>モニタリング内 TSS 最大値（mg/L）</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciliwung</td>
<td>14</td>
<td>12</td>
<td>700</td>
</tr>
<tr>
<td>Cipinang</td>
<td>6</td>
<td>6</td>
<td>140</td>
</tr>
<tr>
<td>Kali Sunter</td>
<td>6</td>
<td>6</td>
<td>740</td>
</tr>
<tr>
<td>Kali Baru</td>
<td>8</td>
<td>8</td>
<td>215</td>
</tr>
<tr>
<td>Kanal Timur</td>
<td>3</td>
<td>3</td>
<td>92</td>
</tr>
<tr>
<td>Kali Angke</td>
<td>4</td>
<td>4</td>
<td>369</td>
</tr>
<tr>
<td>Buaran</td>
<td>3</td>
<td>3</td>
<td>2,680</td>
</tr>
<tr>
<td>Krukut</td>
<td>2</td>
<td>2</td>
<td>601</td>
</tr>
<tr>
<td>Cengkareng</td>
<td>2</td>
<td>2</td>
<td>72</td>
</tr>
<tr>
<td>Grogol</td>
<td>5</td>
<td>5</td>
<td>218</td>
</tr>
<tr>
<td>Sepak</td>
<td>2</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Pesanggrahan</td>
<td>5</td>
<td>5</td>
<td>327</td>
</tr>
<tr>
<td>Blencong</td>
<td>1</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>Kali Mookervert</td>
<td>5</td>
<td>5</td>
<td>159</td>
</tr>
<tr>
<td>Cideng</td>
<td>3</td>
<td>3</td>
<td>589</td>
</tr>
<tr>
<td>Petukangan</td>
<td>2</td>
<td>2</td>
<td>158</td>
</tr>
<tr>
<td>Cakung</td>
<td>3</td>
<td>3</td>
<td>302</td>
</tr>
<tr>
<td>Mampang</td>
<td>5</td>
<td>5</td>
<td>387</td>
</tr>
<tr>
<td>Kamal</td>
<td>3</td>
<td>3</td>
<td>102</td>
</tr>
<tr>
<td>Tarum Barat</td>
<td>3</td>
<td>3</td>
<td>423</td>
</tr>
</tbody>
</table>

出所）DLH「Laporan SLHD Provinsi DKI Jakarta Tahun 2015」より抜粋

ジャカルタ州内の中湖と貯水池に関する水質調査では、43 の湖と貯水池のうち、202 のモニタリングロケーションで、上記河川調査と同時期の 2015 年 9 月、10 月、11 月に水質調査が実施されている。その結果、43 のうち 26 の湖と貯水池で、生物化学的酸素要求量（BOD）の値がインドネシア政府基準値の 30mg/L を超えており、BOD の幅は 2mg/L から 145mg/L であった。最も高い BOD 値が検出されたのは、ジャカルタ北部の漁村地域である Muara Angke の湖（貯水池）である。

一方、化学的酸素要求量（COD）では 43 のうち 33 の湖と貯水池で、インドネシア政府基準値の 100mg/L を超えており、COD の幅は 15mg/L から 1050mg/L であった。最も高い COD 値が検出されたのは、ジャカルタ北部の住宅地である Kelapa Gading 地域の湖（貯水池）である。

年々増える人口に比して、上水設備が行き渡っておらず、現在でも多くのジャカルタ市民が河川や湖・貯水池から、飲料水を含む生活用水を得ている。2014 年に実施された同調査と比べて、2015 年の水質調査結果は汚染度が進んでいるとの結論を DLH では示してお
リ、住宅密集地の住民の健康への悪影響が懸念される状況である。

ウ．普及・実証に向けたパイロットサイトの決定

ジャカルタ州内の水質調査の結果を参照した結果、州内の各地域における水質調査結果はインドネシア政府基準を下回っており、特に街中になるほど水質が悪くなることが判明している。そのため、普及・実証に向けたパイロットサイト選定に関し、基本的にどの地域でも水質改善が実証できるものと考えられ、住宅密集地であればその効果は一層明らかになると想定する。

そこで、これまでの検討基準（ジャカルタ下水道計画のZone 1とZone6以外の場所、処理設備への管渠アクセスがあること、新規・増設が可能、カウンターパートからの推薦があること）から、パイロットサイトの条件を再度検証し、DSDA、PD Pal Jaya、JICAインドネシア事務所とも相談の上、DSDAが保有・管理・運営するMalakasariを普及・実証事業推進時のパイロットサイトとして選定することとした。

＜選定理由＞

● DSDA／PD Pal Jayaからの提案の中で選定基準を満たすこと
 - 選定基準として挙げた「設置場所まで管渠または下水送配の仕組があること」「バイオアルシーの設置場所を確保できること」「他処理方法と比較できること」のいずれの条件も満たすことができる。
 - Malakasariについては、現在、500世帯を対象とした設備として、2つの処理方法にて下水処理を実施している。そのため、下水処理設備まで管渠が整備されており、バイオアルシーを敷地内に設置する場合、敷地内の配管を整備すれば良い。また、敷地にはバイオアルシーを設置するに足る場所が宿休地として残っており、その場所を活用可能との提案を頂いている。さらに本敷地はDSDA所有であり、運営管理もDSDAが実施しているため、当地で普及・実証事業を推進する場合も調整をスムーズに実施することができる。

● JICAが推進しているZone1、Zone6外の場所であること
 - 現行進んでいるZone1、Zone6では集中処理も含め、詳細な下水処理プランの策定に進むことから、その調整を複雑化しないためにもZone1、6以外の場所を選定した。

● JICAの「ジャカルタ特別州下水道整備における計画策定能力向上プロジェクト」との連携が可能であること
 - 後述する通り、現在、JICAでは下水道事業としての機能充実のため、ジャカルタ特別州の下水道事業に対し、組織制度の構築や基礎的な知識の習得などを支援している。その内で特にMalakasari下水処理場においては、管渠ならびに污泥清掃の実現に向けた活動や周辺地域住民に対する理解促進の社会活動も進められており、下水処理に対するハード面（バイオアルシー設置による普及・実証事業）、ソフト面（上記、ジャカルタ特別州下水道整備における計画策定能力向上プロジェクト）の両面からアプローチが可能となる。ジャカルタ特別州の下水道整備事業における分散処理において、良いモデルケースの形を構築することが可能となる。

● 普及・実証事業推進に向けDSDA内でのコンセンサスが得やすいこと
- 上記の JICA の現行プロジェクトとも関連し、Malakasari 下水処理場においては管渠・汚泥の除去が進められた。ジャカルタの下水処理に関して、下水処理設備設置後のメンテナンスが十分でなく、放置されていることも多いことが、本案件化調査内でも明らかになっており、下水処理場内に排水が十分に入ってこない（途中で流出してしまう）処理場も存在している。

- Malakasari 下水処理場においても、過去、一度も汚泥除去が行われていない状況であった。現在、ちょうどメンテナンス体制構築に向けて汚泥除去を行ったタイミングでもあり、バイオアルシーの普及・実証が進む際にはモデルケースの構築と言う意味でも DSDA 内で予算確保を行いやすい環境にあるとの言質を得ている。
第4章 ODA案件にかかる具体的提案

4－1. 現時点で想定するODA案件概要

4－1－1. 想定するODAスキーム

これまで検討を進めてきた通り、現在想定しているODAスキームとして「普及・実証事業」を検討している。「普及・実証事業」では、汚泥や臭気を発生させず、運営的、費用的な面から効率的に生活排水処理を行うというバイオアルシーの特長を、インドネシアにおいて実証したいと考えている。その為に、ジャカルタ特別州水資源局（DSDA）が管理運営しているマラカサリ下水処理場内の土地にバイオアルシーを一基設置し、水質調査や汚泥・臭気の発生状況、運営や費用に関する検証を実施することを想定している。また、普及のための手段として、普及委員会を発足させ、マラカサリにおける実証事業結果を、マーケティングやワークショップ等で共有し、具体的な普及方法に向け協議できる場を設けることを想定している。

普及委員会のメンバーとして、インドネシア公共事業・国民住宅省（PUPR）、ジャカルタ特別州水資源局（DSDA）、ジャカルタ特別州開発計画局（BAPPEDA）をコアメンバーに、インドネシア優先インフラ整備促進委員会（KPPIP）やジャカルタ特別州環境局（DLH）、ジャカルタ下水道公社（PD Pal Jaya）等の関係当局、そして水処理関連の事業を取り扱うインドネシアコンサルタント協会（INKINDO）やインドネシア衛生環境工学協会（IATPI）の関係者を一般メンバーに想定している。なお、PUPR、DSDA、DLH、PD Pal Jayaからは、本提案状案調査の面談時に、上記普及委員会にご参加頂く旨、口頭で了承を得ており、KPPIPやINKINDO、IATPIにもメール上で、ご参加のご了承をいただいた。

普及・実証事業で建設を想定しているバイオアルシーの予定地は、ジャカルタ特別州水資源局（DSDA）の管轄であるため、土地に関する費用は発生しない。日本アルシーはバイオアルシー設備の設置にかかわる設計ならびに建設管理を行い、普及・実証事業後に資産が引き継がれるジャカルタ特別州水資源局（DSDA）に、運用管理にかかるサポートを実施する。DSDAは担当者ベースで、資産移譲後の水道光熱費の予算確保を行う旨、合意を得ているが、資産移譲前の予算確保はインドネシア国の法制度上不可能であるため、普及・実証事業実施中の水道光熱費の取扱いについては、他プロジェクトの事例等を参照しつつ、取り決める必要がある。現時点では、PD Pal Jayaのように周辺住民から排水処理にかかる料金を、DSDAは徴収していなかったため、今後DSDAが周辺住民から料金徴収をして自己運用管理を扱っているが、JICAの「ジャカルタ特別州下水道整備における計画策定能力向上プロジェクト」の啓蒙活動と情報共有をつつ、運用管理をサポートしていける体制を取りたい。
4-1-2. 期待される効果

ジャカルタは世界でも有数の人口が集中する大都市であるが、下水道やし尿処理設備の普及率は低く、下水道も整備されていないため、河川や海、地下水の水質は年々悪化する一方である。このような事態を打開するために建設されるべき下水・し尿処理施設であるが、人口が密集することによる用地確保や管渠工事の困難に直面している。JICAが関与している「ジャカルタ首都圏投資促進特別地域（MPA）」マスタープランの中の「ジャカルタ特別州下水道整備事業」第一処理区および第六処理区の計画も、実際に事業が推進され、水質改善の効果が見られるのは、数年以上先の話である。

本案件化事業で普及・実証事業の可能性を検討してきた日本アルシー社のバイオアルシ－施設では、狭い敷地でも大きな処理能力を発揮することができ、一般的な下水・し尿処理施設（押し出し流れ方式など）よりも安価なコストで建設できるため、ジャカルタが直面する深刻な水質悪化の問題に対して、効果的な解決策を提供できるものと考える。特に、上記マスタープランの対象外で人口が密集するスラムのようなエリアで、多少の用地が確保できれば、周辺地域の水質改善に大きく貢献することができる。

また、インドネシアでは当局が下水道費用を徴収する制度が未整備であることから、運営維持の困難さも課題に挙げられているが、バイオアルシーは余剰污泥の発生を大きく抑制できるため、前処理費用や污泥処理にかかる備品、薬品等が抑制できる。加えて、管理人が常駐する必要のない施設であるため、人件費も削減できる。このことから、当面の運営は、当局が必要最低限の光熱費や人件費にかかる予算を確保すれば、十分に貢献することが、想定される成果として挙げられる。一方、将来的な健全な運営・管理体制を整備していく必要があるため、近隣住民にバイオアルシーの効果を周知し、日常生活の負担になり過ぎない程度の下水道費用を徴収していけるよう、当局や JICA の別事業である「ジャカルタ特別州下水道整備における計画策定能力向上プロジェクト」と連携していければ、なお高い開発効果を発揮できるものと考える。

4-1-3. 技術の設置場所

バイオアルシーのパイロットサイトの設置場所としては、ジャカルタ特別州水資源局（DSDA）が所有・管理運営しているマラサリ下水処理場を検討している。東ジャカルタの住宅地に所在するマラサリ下水処理場では、建設から20年近く経過した下水処理施設が2基存在するが、2016年後半まで汚泥清掃が行われて来なかったため、下水処理能力や流入原水の量の低減が疑われる。同処理場は、周辺約500世帯を対象として、うち6、7割と管渠で繋がっているため、バイオアルシーの普及・実証を促進する上で、新たに管渠を敷設する必要がないという好条件を備えている。

マラサリ下水処理場用地の利用は、DSDAから推薦されたものであり、また、同用地はジャカルタ当局が所有している唯一のコミュニティ下水処理施設（各過程と管渠で繋がっている）である。マラサリ用地内にはバイオアルシーを建設するための土地の余裕があり、配電盤や管理人が業務を行える家屋が既に存在する。国立公園・保護対象地区にも該当しない。

具体的には、下図（図4-1）の赤点線で囲んだエリアにバイオアルシーのパイロットプラント建設を想定している。
図 4-1 マラカサリにおけるバイオアルシー建設構想図
（出所）日本アルシー

なお、マラカサリ下水処理場の汚泥除去活動や周辺住民への啓蒙活動、DSDA への啓蒙活動に関し、JICA の「ジャカルタ特別州下水道整備における計画策定能力向上プロジェクト」が積極的に関与しており、実際に同地においてパイロットプラントの普及・実証が行われる場合には、上記 JICA プロジェクトとの協同も可能と考える。
4-2 想定する観光スキーム
4-2-1 普及・実証事業の活動内容
ジャカルタの現状を踏まえ、普及方法を関係者と検討した結果、まずは実態としてどの程度バイオアルシーがインドネシアの下水処理に効果があるのかを確認した上で、同時に普及に向けた検討を関係者と協議するのが良い、という結果に至った。具体的な活動内容は、下表の通りである。

<table>
<thead>
<tr>
<th>成果</th>
<th>活動</th>
</tr>
</thead>
<tbody>
<tr>
<td>成果1</td>
<td>1-1 バイオアルシー建設
効果的な下水処理による水質改善</td>
</tr>
<tr>
<td></td>
<td>1-2 処理前、処理後の水質調査
1-3 処理水量の計測</td>
</tr>
<tr>
<td></td>
<td>1-4 バイオアルシーの処理水に関する当局の認証申請（KLD、PUSKIM）</td>
</tr>
<tr>
<td>成果2</td>
<td>2-1 バイオアルシー建設に当たって必要な環境影響評価（AMDAL）の確認・申請、建設許可申請
狭い用地における下水処理実施</td>
</tr>
<tr>
<td></td>
<td>2-2 環境改善（臭気・騒音）に関する近隣住民ヒアリング</td>
</tr>
<tr>
<td>成果3</td>
<td>3-1 バイオアルシー建設費検証
建設費と運営・維持費の抑制</td>
</tr>
<tr>
<td></td>
<td>3-2 実証稼動中の汚泥の発生状況検証
3-3 実証稼動中の熱費の検証</td>
</tr>
<tr>
<td></td>
<td>3-4 実証稼動中の燃費利用の検証
3-5 既存下水処理場の運営・維持費の情報収集
3-6 建設費と運営・維持費の比較</td>
</tr>
<tr>
<td>成果4</td>
<td>4-1 本邦研修（日本におけるバイオアルシーの活用例を当局関係者に周知）
市民生活の質改善に向けた環境作り</td>
</tr>
<tr>
<td></td>
<td>4-2 バイオアルシー維持・管理に関するマニュアルの作成
4-3 マニュアルに沿った運営管理の技術指導（移転）
4-4 マラカサリ以外に有効な候補地の検討
4-5 マラカサリ以外の候補地における原水の水質調査・実効性の検証</td>
</tr>
<tr>
<td></td>
<td>4-6 民需市場の詳細調査・分析、委員会への共有事項整理
4-7 ワークショップ実施によるバイオアルシー実証効果の情報共有
4-8 委員会の組成、普及方法の検討</td>
</tr>
</tbody>
</table>

出所）日本アルシー
バイオアルシーの普及・実証に向けた連携強化を図るため、本邦受入研修は事業の初期段階にて実施することを想定している。

現在、想定している本邦受入研修スケジュールは以下の通り。

表 4-2 普及・実証事業における本邦受入研修スケジュール（案）

<table>
<thead>
<tr>
<th>(曜日)</th>
<th>開始時間</th>
<th>終了時間</th>
<th>内容</th>
<th>講師</th>
<th>場所</th>
<th>用途</th>
</tr>
</thead>
<tbody>
<tr>
<td>0日目</td>
<td>(日)</td>
<td>23:35</td>
<td>8:50+1</td>
<td>移動</td>
<td>GA874 ジャカルタ → 東京(羽田)</td>
<td>邸内泊</td>
</tr>
<tr>
<td>1日目</td>
<td>(月)</td>
<td>9:30</td>
<td>10:30</td>
<td>移動</td>
<td>羽田空港 → 川崎</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10:30</td>
<td>12:00</td>
<td>見学</td>
<td>バイオアルシー</td>
<td>神奈川県内工場</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14:00</td>
<td>17:00</td>
<td>見学</td>
<td>(納豆工場流水処理)</td>
<td>ICETT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17:30</td>
<td>18:00</td>
<td>開講式</td>
<td>ICETT 研修室</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18:00</td>
<td>19:30</td>
<td>イベント</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2日目</td>
<td>(火)</td>
<td>9:00</td>
<td>10:00</td>
<td>イベント</td>
<td>オリエンテーション</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10:30</td>
<td>12:30</td>
<td>講義</td>
<td>三重県の水処理場の歴史と現状</td>
<td>三重県 (予定)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14:00</td>
<td>16:30</td>
<td>講義</td>
<td>下水処理技術</td>
<td>日本アルシー藤野社長</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16:30</td>
<td>17:30</td>
<td>見学</td>
<td>バイオアルシー</td>
<td>日本アルシー藤野社長</td>
</tr>
<tr>
<td>3日目</td>
<td>(水)</td>
<td>9:00</td>
<td>11:00</td>
<td>見学</td>
<td>集中型下水処理場見学</td>
<td>三重県四日市市内</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13:00</td>
<td>14:30</td>
<td>見学</td>
<td>集中型下水処理場見学</td>
<td>三重県四日市市内</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15:30</td>
<td>16:30</td>
<td>見学</td>
<td>バイオアルシー</td>
<td>日本アルシー藤野社長</td>
</tr>
<tr>
<td>4日目</td>
<td>(木)</td>
<td>9:00</td>
<td>10:30</td>
<td>見学</td>
<td>バイオアルシー</td>
<td>日本アルシー藤野社長</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14:30</td>
<td>16:00</td>
<td>見学</td>
<td>バイオアルシー</td>
<td>日本アルシー藤野社長</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17:00</td>
<td>18:00</td>
<td>協議</td>
<td></td>
<td>ICETT 研修室 または日本アルシー</td>
</tr>
<tr>
<td>5日目</td>
<td>(金)</td>
<td>7:55</td>
<td>8:55</td>
<td>移動</td>
<td>ANA086 名古屋（中緑） → 東京（羽田）</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11:45</td>
<td>16:55</td>
<td>移動</td>
<td>GA875 東京（羽田） → ジャカルタ</td>
<td></td>
</tr>
</tbody>
</table>

出所）日本アルシー
4-2-2. 実施体制と役割
バイオアルシーの普及・実証事業が実現した場合の実施体制として、次の体制図を検討しており、既に PU や DSDA 等、主要関係者にはこのスキームを共有済みである。

PU (Ministry of Public Works)

JICA

BAPPEDA

Dinas Sumber Daya Air

Malakasari

Bio Alsi

Japan Alsi

Residents

<Related Party>

KPPIP, KLHK, BPPT, PUSKIM, DLH, IATPI, PD Pal Jaya, INKINDO, etc.

PU: JICA と MOM を締結し、普及・実証事業の総監督を実施。プロジェクト終了後の、パイロットプラント移設時における直接の契約者となる。

BAPPEDA: 普及・実証事業を地方政府で実施する上で、直接の監督権限を持つジャカルタ開発計画局

Dinas Sumber Daya Air (DSDA): バイオアルシー普及・実証事業のカウンターパート

Japan ALSi (日本アルシー): バイオアルシー普及・実証事業の提案企業

Residents: マラカサリ下水処理場の近隣住民。バイオアルシー普及・実証事業の直接の裨益者

KPPIP, KLHK, BPPT, PUSKIM, DLH, IATPI, PD Pal Jaya, INKINDO 等: 将来的な顧客またはビジネスパートナー
バイオアルシー普及・実証事業における直接のカウンターパートである DSDA の役割と業務内容として、次の内容を検討している。

【役割】
① 土地の提供
② インドネシア政府関係者との調整
③ ODA 案件実施後のバイオアルシー維持管理

【業務内容】
① 具体的な建設地の指示
② 建設にかかる許認可等の指示、取得支援
③ バイオアルシー建設予定、進捗状況の監督
④ 処理前、処理後の水質調査結果把握
⑤ ODA 案件実施後の光熱費にかかる予算獲得手配
⑥ ODA 案件実施後のパイロットプラントを管理する人材任命
⑦ ODA 案件実施後のパイロットプラント管理人員のメンテナンススキル技術移転
⑧ 普及・実証結果を元に、ジャカルタ州に水平展開していく上での助言提供

バイオアルシー普及・実証事業の提案企業である日本アルシー社の役割は、バイオアルシー設備の設置にかかる設計ならびに建設管理を行い、普及・実証事業後に資産が引き継がれるジャカルタ特別州水資源局（DSDA）に、運用管理にかかるサポートを実施することである。並行して水質調査や普及展開の可能性を探り、ワークショップを通じてインドネシア当局とその他の関係者に情報共有をする必要もある。投入する人員は、案件化調査に携わった人員に加えて、実際にバイオアルシーを建設する業者となる。なお、マラカサリ下水処理場に適すると考えられているバイオアルシーの仕様は、下表の通りである。

表 4-3 マラカサリ下水処理場にて導入予定のバイオアルシー

<table>
<thead>
<tr>
<th>マラカサリ下水処理場に適するバイオアルシーの仕様</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COD クロム負荷</td>
<td>200 mg / L x 200 m³ / D = 40 kg CODcr / D</td>
</tr>
<tr>
<td>BOD5 負荷</td>
<td>150 mg / L x 200 m³ / D = 30 kg CODcr / D</td>
</tr>
<tr>
<td>バイオアルシー直径×高さ</td>
<td>6 m x 6.5 m</td>
</tr>
<tr>
<td>スクリーン</td>
<td>ウェッジワイヤースクリーンの網目幅 = 0.5 mm</td>
</tr>
<tr>
<td>前処理槽</td>
<td>均等化槽：10 m³ x 3 room = 30 m³</td>
</tr>
<tr>
<td>遠心脱水機</td>
<td>1.5 m x 2 m (W 1,320 x L 1,675 x H 573)</td>
</tr>
<tr>
<td>スペース</td>
<td>49 + 6 + 2 + 5 = 62 m² : 7 m x 10 m</td>
</tr>
<tr>
<td>総予算</td>
<td>〜90,000,000 円</td>
</tr>
<tr>
<td>好機槽</td>
<td>22 m³ (1.4 kg BOD / m³ / D, 1.4 kg COD / m³ / D)</td>
</tr>
<tr>
<td>嫌気槽</td>
<td>35 m³</td>
</tr>
<tr>
<td>沈殿槽の量</td>
<td>98 m³ (表面荷重 25 m³)</td>
</tr>
<tr>
<td>表面荷重</td>
<td>200 m³ / D / 25 m³ = 8 m³ / m³ / D</td>
</tr>
<tr>
<td>cycle No = 3,200 x 3 / 25 = 24 m³ / m³ / D</td>
<td></td>
</tr>
<tr>
<td>MLSS</td>
<td>2,000 〜 3,000 mg / L</td>
</tr>
</tbody>
</table>

83
<table>
<thead>
<tr>
<th>プロワー（m³ / D）</th>
<th>750 m³ / D = 0.6 m³ / min</th>
</tr>
</thead>
<tbody>
<tr>
<td>電力（プロワー）</td>
<td>プロワー：2.2 Kw x 2 x 0.5 = 2.2 KwH</td>
</tr>
<tr>
<td>Agiotor</td>
<td>7.5 kw 0.3 = 2.25 KwH</td>
</tr>
<tr>
<td>ポンプ</td>
<td>1.5 kw x 0.6 = 0.9 KwH</td>
</tr>
<tr>
<td>遠心脱水機</td>
<td>(2.2 kw + 0.75 kw) x 0.7 = 2.0 KwH</td>
</tr>
<tr>
<td>総電力</td>
<td>7.35 KwH x 24 Hr = 176 KwH /mC (20 Kw)</td>
</tr>
<tr>
<td>処理費用</td>
<td>176 KwH x 1200 ルピア / KwH / 200 m³ = 1.056 ルピア / m³ 6,366,000 ルピア / 月</td>
</tr>
<tr>
<td>総運営費用</td>
<td>〜2,000 ルピア / m³</td>
</tr>
<tr>
<td>ビジネスコスト</td>
<td>〜4,000 ルピア / m³</td>
</tr>
</tbody>
</table>

出所）日本アルシー

図 4-3 バイオアルシーの設備機器イメージ

出所）日本アルシー

4-2-3. 普及実証事業における活動スケジュール

バイオアルシー普及・実証にかかる各期待される成果に結びつく活動のスケジュールは以下の表の内容を計画している。
<table>
<thead>
<tr>
<th>成果</th>
<th>活動</th>
<th>月数及びスケジュール</th>
</tr>
</thead>
<tbody>
<tr>
<td>事前準備</td>
<td>0-1</td>
<td>普及委員会開催、普及・実証事業の案内</td>
</tr>
<tr>
<td></td>
<td>0-2</td>
<td>バイオアシール建設にかかる準備（用地調査、業者選定、設備輸入）</td>
</tr>
<tr>
<td></td>
<td>0-3</td>
<td>当局とバイオアシール建設に際し、必要手続きの確認・実施</td>
</tr>
<tr>
<td>成果1</td>
<td>1-1</td>
<td>バイオアシール建設</td>
</tr>
<tr>
<td></td>
<td>1-2</td>
<td>処理前後、処理後の水質調査</td>
</tr>
<tr>
<td></td>
<td>1-3</td>
<td>処理水量の計測</td>
</tr>
<tr>
<td></td>
<td>1-4</td>
<td>バイオアシールの処理水に関する当局の認証申請（R&D, PSEIB)</td>
</tr>
<tr>
<td>成果2</td>
<td>2-1</td>
<td>バイオアシール建設に当たって必要な環境影響評価 (EIA) の確認・申請、建設許可申請</td>
</tr>
<tr>
<td></td>
<td>2-2</td>
<td>環境改善（農業・騒音）に関する近隣住民とアスレット</td>
</tr>
<tr>
<td>成果3</td>
<td>3-1</td>
<td>バイオアシール建設費検証</td>
</tr>
<tr>
<td></td>
<td>3-2</td>
<td>実証施設中の汚泥の発生状況検証</td>
</tr>
<tr>
<td></td>
<td>3-3</td>
<td>実証施設中の汚泥費の検証</td>
</tr>
<tr>
<td></td>
<td>3-4</td>
<td>実証施設中の補助金費の検証</td>
</tr>
<tr>
<td></td>
<td>3-5</td>
<td>既存下水処理場の運営・維持費の情報収集</td>
</tr>
<tr>
<td></td>
<td>3-6</td>
<td>設備費と運営・維持費の参照比較</td>
</tr>
<tr>
<td>成果4</td>
<td>4-1</td>
<td>本邦研究（日本におけるバイオアシールの活用例を当局関係者に周知）</td>
</tr>
<tr>
<td></td>
<td>4-2</td>
<td>バイオアシール運営・管理に関する技術の移転</td>
</tr>
<tr>
<td></td>
<td>4-3</td>
<td>マラカサリ以外に有効な栽培地の検討</td>
</tr>
<tr>
<td></td>
<td>4-4</td>
<td>マラカサリの栽培地における原水の水質調査・効果性の検証</td>
</tr>
<tr>
<td></td>
<td>4-5</td>
<td>ワークショップ実施、バイオアシール実証結果に関する情報共有</td>
</tr>
<tr>
<td></td>
<td>4-6</td>
<td>普及方法の検討</td>
</tr>
</tbody>
</table>

出所）日本アルシー
4-2-4 事業実施費用概算
バイオアルシー普及・実証を推進するために必要な費用の見積は以下の通り。普及・実証推進時には詳細な見積を取った上で精緻化していきたい。

表 4-5 普及・実証事業見積概算

<table>
<thead>
<tr>
<th>項目</th>
<th>金額（円）</th>
</tr>
</thead>
<tbody>
<tr>
<td>人件費</td>
<td>39,456,000</td>
</tr>
<tr>
<td>直接人件費</td>
<td>15,878,000</td>
</tr>
<tr>
<td>その他原価</td>
<td>14,964,000</td>
</tr>
<tr>
<td>一般管理費など</td>
<td>8,614,000</td>
</tr>
<tr>
<td>直接経費</td>
<td>90,408,000</td>
</tr>
<tr>
<td>機材製造・購入・輸送費</td>
<td>81,000,000</td>
</tr>
<tr>
<td>バイオアルシー微生物処理設備</td>
<td>27,000,000</td>
</tr>
<tr>
<td>コンクリート製前曝気槽</td>
<td>4,500,000</td>
</tr>
<tr>
<td>遠心脱水機</td>
<td>13,000,000</td>
</tr>
<tr>
<td>電気計装・制御盤</td>
<td>8,000,000</td>
</tr>
<tr>
<td>自動遠隔監視運転設備</td>
<td>3,000,000</td>
</tr>
<tr>
<td>バイオアルシー設置基礎工事</td>
<td>4,500,000</td>
</tr>
<tr>
<td>配管・電気工事</td>
<td>6,500,000</td>
</tr>
<tr>
<td>分析機器</td>
<td>6,500,000</td>
</tr>
<tr>
<td>機器メンテナンス</td>
<td>3,000,000</td>
</tr>
<tr>
<td>査包・輸送費</td>
<td>2,000,000</td>
</tr>
<tr>
<td>税・保険</td>
<td>3,000,000</td>
</tr>
<tr>
<td>旅費</td>
<td>3,951,000</td>
</tr>
<tr>
<td>航空券</td>
<td>1,869,000</td>
</tr>
<tr>
<td>日当・宿泊料、内国旅費</td>
<td>2,082,000</td>
</tr>
<tr>
<td>現地活動費</td>
<td>4,420,000</td>
</tr>
<tr>
<td>車両</td>
<td>1,188,000</td>
</tr>
<tr>
<td>通訳費</td>
<td>1,152,000</td>
</tr>
<tr>
<td>ワークショップ費</td>
<td>1,080,000</td>
</tr>
<tr>
<td>ライセンス取得費</td>
<td>1,000,000</td>
</tr>
<tr>
<td>本邦受入活動費</td>
<td>1,037,000</td>
</tr>
<tr>
<td>管理費</td>
<td>9,003,000</td>
</tr>
<tr>
<td>小計</td>
<td>138,867,000</td>
</tr>
<tr>
<td>消費税（8%）</td>
<td>11,109,360</td>
</tr>
<tr>
<td>合計</td>
<td>149,976,360</td>
</tr>
</tbody>
</table>

出所）日本アルシー
4-3. 他のODA 案件との連携
JICA の「ジャカルタ特別州下水道整備における計画策定能力向上プロジェクト」では、下水道事業に関する経験が浅く、実施機関が十分に機能していないジャカルタ特別州に対し、下水道事業に関する専門家を派遣し、下水道に関する組織制度の構築や、基礎的な知識の習得、同地域の下水道整備計画を支援している。特に、マラカサリ下水処理場の汚泥清掃の実現に向けた活動や周辺地域住民への周知活動において、同プロジェクトは積極的に参画している。バイオアルシーコー普及・実証事業が実施した場合には、ハード面での下水道整備が行われるため、同プロジェクトとの相乗効果を図ることができる。
なお、同じくJICA の「ジャカルタ特別州下水道整備事業」に関しては、その計画ゾーンからマラカサリ下水処理場は外されているため、直接的な調整業務は必要ではないと考えている。ただし、インドネシア側のカウンターパートや関係当局が大きく重なるため、上記事業の進捗状況を確認しつつ、バイオアルシーコー普及・実証事業の情報を共有し、情報の収集しない体制を取る必要があると考える。

4-4. ODA 推進に向けた合意形成
ODA 案件として、普及・実証事業推進に向けて、カウンターパートを予定しているDSDAと十分な議論を進めてきた。その中で普及・実証事業の予定地となるMalakasari下水処理場を提案頂き、また、バイオアルシーの現地視察を通じ理解を頂いている。その結果、普及・事業推進に向けて Malakasari 下水処理場の利用について言及頂いている。
一方、普及・実証に向けて各関係省庁における連携が必要であることから、普及委員会の設置を想定している。普及委員会の設置に際しては、関係省庁に打診を行っており、既にインドネシア公共事業・国民住宅省 (PUPR) やカウンターパートであるジャカルタ特別州水資源局 (DSDA) とは、委員会への参加と情報交換について、口頭ベースでの合意を得ている。この 2 者に加え、ジャカルタ特別州開発計画局 (BAPPEDA) を普及委員会のコアメンバーとしていると考えている。
また、インドネシア優先インフラ整備促進委員会 (KPPIP) やジャカルタ特別州環境局 (DLH)、ジャカルタ下水道公社 (PD Pal Jaya) 等の関係当局、そして水処理関連の事業を取り扱うインドネシアコンサルタント協会 (INKINDO) やインドネシア衛生環境工学協会 (IATPI) の関係者を一般メンバーに想定しているが、このうちDLH と PD Pal Jaya からも、本案件化調査の面談時に、上記普及委員会にご参加頂く旨、口頭で了承を得ている。KPPIP や INKINDO、IATPI にも、メールで普及委員会への参加を呼び掛けている。
4-5. ODA 案件形成における課題と対策

バイオアルシーの普及・実証事業を実現させるに当たり、案件化調査でその実現可能性を検討したが、DSDA が推奨する候補地であるマラカサリにおいては、インフラの整備状況や用地に関し、普及・実証事業を進める上の支障は特になくと考えている。現在設置されている管線を延伸し、バイオアルシーと繋げ、現在の電気盤の電力を引き上げる作業は必要であるが、通常のバイオアルシー建設事業の中で実施できるものと考える。

許認可に関しては、建設許可や環境影響分析等を得る必要があるが、ジャカルタ州政府の土地であるため、カウンターパートの意見を得つつ進める事を想定している。管理人員に関しては、バイオアルシーの自体が常駐者を必要としない遠隔操作型の設備であるため、現在マラカサリ下水処理場に常駐している人員に、管理方法を移転することで十分である。ただし、普及・実証事業実施中の電気代について、移譲プロセス上の課題があると考えられている。なお、バイオアルシー普及・実証事業で収益発生しない予定である。

4-5-1. 課題① バイオアルシー普及・実証設備の設備移譲プロセス

バイオアルシーの実証設備は、ODA を活用した JICA の資産として建設されるため、本件の直接のカウンターパートとなる DSDA 含むジャカルタ地方政府に直接供与することはできず、まずインドネシア中央政府に供与する手続きが必要となる。具体的には、JICA と財務省との間で資産譲渡契約を締結し、地方政府に供与または貸与する旨を明らかにし、公式移譲文書（BAST）を締結する等の手続きである。この手続きに遅れが生じた場合、バイオアルシーの運営・管理を担う責任者や、運転費用（水道光熱費）の負担者が空白となる可能性が生じ、手続きが終了するまでバイオアルシーの稼働が停止することが懸念される。

そのような事態を防ぐため、バイオアルシーの建設・完成の後、普及・実証事業終了前であってもインドネシア側への譲渡手続きを進め、バイオアルシーの所有権をインドネシア側に移譲しつつ、使用権を日本側（JICA）に残すことを公共事業省と交わす MOM（Minutes of Meeting）に明記することを検討している。

4-5-2. 課題② バイオアルシー普及・実証事業実施中の電気代負担

DSDA からは担当者ベースで、資産移譲後の水道光熱費の予算確保を行う旨、合意を得ているが、資産移譲前の予算確保はインドネシア国の法制度上不可能であるとの返答であった。そのため、普及・実証事業実施中の水道光熱費の取扱いについては、他プロジェクトの事例等を参照しつつ、取り決める必要がある。一方、上記課題①への対応方法が迅速に行われた場合、設備移譲後の費用負担をインドネシア側が行うことは可能であるため、バイオアルシー建設前の段階から、この課題に対処するべく前進に公共事業省や DSDA と調整・交渉を進めるべきと考える。
4-6. 環境社会配慮にかかる対応

バイオアルシーの普及・実証事業が実施される場合、環境社会カテゴリーのB案件「カテゴリーAよりは影響が小さい」に当該する。本事業はジャカルタ市内の住宅地に存在する既存下水処理施設の中で実施される予定であり、用地取得や住民移転は発生せず、希少生物や保護区、湿地、先住民族の居住地などの基準にも当該しない。また、バイオアルシーの特長を鑑み、周辺住民に騒音や臭気の問題を引き起こす可能性は低い。

バイオアルシーの建設に当たっては、インドネシア国の環境影響評価（AMDAL）が必須であり、これは普及・実証事業の始めに実施される予定である。バイオアルシーの環境チェックリスト結果は次表の通りである。
<table>
<thead>
<tr>
<th>表 4-6 JICA 環境社会配慮チェックリスト</th>
<th>環境項目</th>
<th>主なチェック項目</th>
<th>配慮のための環境法等の利用</th>
<th>配慮する理由</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 環境</td>
<td>環境リスク予測</td>
<td>(a) 環境リスク解析</td>
<td>環境リスクの把握と対策の策定</td>
<td>環境リスクの予測</td>
</tr>
<tr>
<td>2 公害</td>
<td>公害対策</td>
<td>(b) 公害対策の策定</td>
<td>公害を防ぐための対策の策定</td>
<td>公害対策の策定</td>
</tr>
<tr>
<td>3 自然</td>
<td>自然環境保全</td>
<td>(c) 自然環境の保全</td>
<td>自然環境の保全と再生</td>
<td>自然環境の保全</td>
</tr>
<tr>
<td>4 生態系</td>
<td>生態系の保護</td>
<td>(d) 生態系の保護</td>
<td>生態系の保全と再生</td>
<td>生態系の保護</td>
</tr>
<tr>
<td>5 住民移転</td>
<td>住民移転</td>
<td>(e) 住民の同意</td>
<td>住民の同意と居住環境の改善</td>
<td>住民の同意</td>
</tr>
<tr>
<td>6 生活・生活</td>
<td>生活環境</td>
<td>(f) 生活環境の改善</td>
<td>生活環境の改善</td>
<td>生活環境の改善</td>
</tr>
<tr>
<td>7 文化遺産</td>
<td>文化遺産</td>
<td>(g) 文化遺産の保護</td>
<td>文化遺産の保護</td>
<td>文化遺産の保護</td>
</tr>
<tr>
<td>8 景観</td>
<td>景観</td>
<td>(h) 景観の保護</td>
<td>景観の保護</td>
<td>景観の保護</td>
</tr>
<tr>
<td>9 少数民族、先住民族</td>
<td>少数民族、先住民族</td>
<td>(i) 少数民族、先住民族の権利</td>
<td>少数民族、先住民族の権利</td>
<td>少数民族、先住民族の権利</td>
</tr>
<tr>
<td>10 労働環境</td>
<td>労働環境</td>
<td>(j) 労働環境の改善</td>
<td>労働環境の改善</td>
<td>労働環境の改善</td>
</tr>
<tr>
<td>11 工事中の影響</td>
<td>工事中的影響</td>
<td>(k) 工事中の影響</td>
<td>工事中の影響</td>
<td>工事中の影響</td>
</tr>
<tr>
<td>12 モニタリング</td>
<td>モニタリング</td>
<td>(l) モニタリングの実施</td>
<td>モニタリングの実施</td>
<td>モニタリングの実施</td>
</tr>
<tr>
<td>13 検討</td>
<td>検討</td>
<td>(m) 検討</td>
<td>検討</td>
<td>検討</td>
</tr>
</tbody>
</table>
第5章 ビジネス展開の具体的計画

5－1. 市場動向の整理
5－1－1. 民需市場の対象

本案件化調査では、住宅・マンションからでる生活排水ならびにし尿にかかる地域全体の下水処理を対象としてこれまで調査を進めてきた。一方、民需需要としては集合住宅や高層マンションなどに個別に処理設備を有する物件、工業団地としての処理設備や個別企業の設備、商業施設等を対象としている。本調査を進めていく中で需要も見受けられたため、本稿ではそれらを対象とした民需需要にかかるビジネス展開について検討を進みたい。

<table>
<thead>
<tr>
<th></th>
<th>生活排水</th>
<th>し尿</th>
<th>工業排水</th>
</tr>
</thead>
<tbody>
<tr>
<td>住宅・マンション</td>
<td>△</td>
<td>△</td>
<td>-</td>
</tr>
<tr>
<td>(民需中心に調査)</td>
<td>(民需中心に調査)</td>
<td>(民需中心に調査)</td>
<td></td>
</tr>
<tr>
<td>工業団地・工場</td>
<td>○</td>
<td>○</td>
<td>-</td>
</tr>
<tr>
<td>(民需中心に調査)</td>
<td>(民需中心に調査)</td>
<td>(民需中心に調査)</td>
<td></td>
</tr>
<tr>
<td>商業施設</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(民需中心に調査)</td>
<td>(民需中心に調査)</td>
<td>(民需中心に調査)</td>
<td></td>
</tr>
</tbody>
</table>

出所）日本アルシー

5－1－2. 各セグメントの市場動向
（1）工業団地市場の動向

民需需要の中でも工場利用の工場における工場排水は、日本アルシーにて日本ならびに海外にて業績を有するため、主要ターゲットの一つとなっている。現在進行中はバイオアルシー設備も民需食品工場内に設置されたものであり、生活排水と比較して濃度の高い水処理対応しているものである。

ジャカルタ周辺地域における工場用地の開発状況を見ると Bekasi, Karawan 地域における開発がこれまで進んでいることが分かる。既存関係区域の中で未開発分を見ると、同様に Bekasi ならびに Karawan 地域にて残存エリアが高いことが分かる。一方、今後の開発予定という意味合いにおいては、Karawan ならびに Tangeran 地域にポテンシャルを有していることが分かる。

民需を指標にあたって、新規建設地域に設置を考えるか、または、既存設備の強化またはリプレイスを考えるか、という2つのオプションが想定される。工業団地へのインタビューでは、既存設備における問題は臭いや効果の面でも発生していないとの意見もあり、リプレイスまたは追加設備は困難と考えられる。一方、バイオアルシーの性能や設備購入ではなく月額支払の考え方については一定の評価を得た（ある工業団地における排水処理にかかる費用は IDR 3,500／㎡、上水運営費は IDR1,500／㎡であり、工業団地入居企業に対しては上下水管理費用で USD 1／㎡負担頂いているとのこと。バイオアルシーにおける費用負担は IDR2,000～4,000／㎡となる見込みであり、価格競争力も確保できる可能性が
高い。その意味で、新規開発の段階からアプローチすることが望ましいと考えられ、Karawan、Tangeranを中心に Bekasi、Serang 地域における工業団地開発に着目し、事業展開を進めていきたい。
一方、食品工場や繊維工場などにおける個別企業へのインタビューによると、既存の排水処理設備においては、想定の廃棄物を処理除去に多額の費用を支払っていることから、バイオアルシープの仕組みならびにランニングコストの低減可能性について非常に興味を持っていただいた。一般企業においては、各事業特性により排水処理に多額の費用を投下する必要があるため、工業団地内企業であっても工業団地の排水基準を満たすためにも個別に排水処理設備を有するケースも多い。そのような中においては、バイオアルシープのランニングコストの安さ、狭い敷地でも対応可能な設備は強みとなり求が可能と考えられる。

![図 5-1 ジャカルタにおける工業用地の開発状況](2016年現在)
図 5-2 ジャカルタにおける業種別 工業用地利用状況（2016 年末現在）
表 5-2 インドネシアにおける工業団地設立計画

<table>
<thead>
<tr>
<th>No</th>
<th>Industrial Estate Name</th>
<th>Province</th>
<th>Area (Ha)</th>
<th>Masterplan Finish</th>
<th>WWTP Construction</th>
<th>PIC of WWTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kawasan Industri Paku</td>
<td>Central Sulawesi</td>
<td>1,500</td>
<td>2007</td>
<td>2017</td>
<td>PT Bangun Paku Suwanto</td>
</tr>
<tr>
<td>2</td>
<td>Kawasan Industri Bontang</td>
<td>North Sulawesi</td>
<td>534</td>
<td>2008</td>
<td>2017</td>
<td>Ministry of Industry</td>
</tr>
<tr>
<td>3</td>
<td>Kawasan Industri Batu Licin</td>
<td>South Kalimantan</td>
<td>530</td>
<td>2008</td>
<td>2018</td>
<td>Ministry of Industry of PT Balijan Bangun</td>
</tr>
<tr>
<td>4</td>
<td>Kawasan Industri Sei Angkei</td>
<td>North Sumatra</td>
<td>1,933</td>
<td>2011</td>
<td>2017</td>
<td>Ministry of Industry of PT Perkebunan Nusantara III (Persero)</td>
</tr>
<tr>
<td>5</td>
<td>Kawasan Industri Mandor</td>
<td>West Kalimantan</td>
<td>306</td>
<td>2013</td>
<td>2017</td>
<td>PT Landak Barajiki</td>
</tr>
<tr>
<td>6</td>
<td>Kawasan Industri Tanura</td>
<td>Wamena</td>
<td>300</td>
<td>2013</td>
<td>2017</td>
<td>Ministry of Industry of PT Feli HA</td>
</tr>
<tr>
<td>7</td>
<td>Kawasan Industri Jorong</td>
<td>South Kalimantan</td>
<td>6,370</td>
<td>2013</td>
<td>2018</td>
<td>Ministry of Industry of Ministry of Industry</td>
</tr>
<tr>
<td>8</td>
<td>Kawasan Industri Tanggus</td>
<td>South Sumatra</td>
<td>3,500</td>
<td>2013</td>
<td>Not Decided</td>
<td>PT Repindo Jagadaya</td>
</tr>
<tr>
<td>9</td>
<td>Kawasan Industri Teluk Bentuni</td>
<td>West Papua</td>
<td>2,112</td>
<td>2013</td>
<td>Not Decided</td>
<td>Ministry of Industry of PT Papuk Indonesia</td>
</tr>
<tr>
<td>10</td>
<td>Kawasan Industri Kuala Tanjung</td>
<td>North Sumatra</td>
<td>1,000</td>
<td>2013</td>
<td>Not Decided</td>
<td>Ministry of Industry of Ministry of Industry</td>
</tr>
<tr>
<td>11</td>
<td>Kawasan Industri Ketapang</td>
<td>West Kalimantan</td>
<td>1,000</td>
<td>2014</td>
<td>2017</td>
<td>PT Ketapang Bangun Sarana</td>
</tr>
<tr>
<td>12</td>
<td>Kawasan Industri Bangun</td>
<td>South Kalimantan</td>
<td>3,000</td>
<td>2014</td>
<td>2017</td>
<td>PT Bantaeng Industrial Persada</td>
</tr>
<tr>
<td>13</td>
<td>Kawasan Industri Konawe</td>
<td>Southeast Sulawesi</td>
<td>5,500</td>
<td>2015</td>
<td>Not Decided</td>
<td>PT Konawe Industrapenta</td>
</tr>
<tr>
<td>14</td>
<td>Indonesia Morowali Industrial Park</td>
<td>Central Sulawesi</td>
<td>1,200</td>
<td>2015</td>
<td>Not Decided</td>
<td>PT Morowali Indonesia Morowali Industrial Park</td>
</tr>
</tbody>
</table>

出所）Minister of Industry, 2016, Presentation on 14 Priority Industrial Estates
注）建設予定面積は予定であり、変更になる可能性有
WWTP: Waste Water Treatment Plant（下水処理施設）PIC: Person in Charge（担当官庁・担当企業）

（2）住宅・マンション市場の動向

住宅・マンションの新規建設は直近では2012年をピークとし、住宅バブルの懸念感からやや開発が抑えられている状況にあった。中間層の拡大を狙い、住宅需要は今後も拡大していくことが予想されており、2017年以降、新規開発が活況になる予測となっている。

マンション運営管理事業者へのインタビューによると、概ね既存の設備で良いものも含め問題が発生していないとの認識を示す企業が多かった。しかしながら、バイオアルシールのコンセプトである狭い敷地で処理が可能なのか、電力消費が少ないこと、汚泥の発生がないこと、薬品費用がかからないことなどランニングコストが抑えられることについては非常に興味を持っていたがケースが多かった。また、設備の購入ではなく、月額支払のスキャムについても興味を持って頂いた。
（３）商業施設市場の動向
商業施設の開発は直近では概ね横ばいで推移していた。インフラ開発の促進ならびに住宅都市の開発により、ショッピングセンターの開発も進められている。特にジャカルタMRTの開発など交通インフラの整備と合わせ、ショッピングセンターの開発も進められており、2018年以降、活況を呈する市場となっている。
商業施設管理会社へのインタビューにおいて、現行の排水処理設備に対して特別な課題は認識しておらず、现状で満足しているとの声が聞かれた。一方、省スペース、省エネにも繋がることから、メリットについて理解頂き、新規で商業施設建設する際に提案するなど
良いのではないかとの声を頂いた。

図 5-5 ジャカルタにおける新規ショッピングセンター面積

図 5-6 ジャカルタにおける累積ショッピングセンター面積
表 5-3 ジャカルタにおけるショッピングセンター建設予定

![Table Image]

（4）ホテル市場の動向

ジャカルタ周辺におけるホテルの築造はその充足感から開発は鈍化傾向になっている。2017年は一定の市場となっているものの、2018年以降は新規の開発は落ち込んでいるのが実態。ホテルにおいては庭の手入れ、トイレ利用においても上水を購入しているのが実態として存在することから、処理水の再利用などによるコスト削減も考えられ、一定のニーズは存在している。

市場の伸び率としては鈍化している傾向はあるものの、上記の通りニーズとしては存在する。そのため、①設備の月額利用などの提案により導入コストを低減させることが、初期導入のハードルを下げる、②バイオアルシードの強みを活かし、ランニングコストを現行比で低減を図る、③処理水の再利用により上水コストの低減を図るなど提案することで市場開拓を図りたい。
図5-7 ジャカルタにおける新規ホテル件数

図5-8 ジャカルタにおける累積ホテル件数
<table>
<thead>
<tr>
<th>No</th>
<th>Hotel Name</th>
<th>Project Name</th>
<th>Rating</th>
<th>Region</th>
<th>Room Size</th>
<th>Completion Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Allia - SCBD Lot 11</td>
<td>5-star CBD</td>
<td>250</td>
<td>2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Holiday Inn Hotel & Resorts Jakarta Gajah Mada</td>
<td>4-star</td>
<td>Central Jakarta</td>
<td>420</td>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Swiss-Belhotel Rasuna Epicentre</td>
<td>4-star</td>
<td>South Jakarta</td>
<td>323</td>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Swiss-Belhotel Kelapa Gading</td>
<td>4-star</td>
<td>North Jakarta</td>
<td>316</td>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ancol Courtyard Marriott Hotel</td>
<td>4-star</td>
<td>North Jakarta</td>
<td>310</td>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Harris Hayam Wuruk</td>
<td>4-star</td>
<td>Central Jakarta</td>
<td>238</td>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Aston Titanic Cijantung</td>
<td>4-star</td>
<td>East Jakarta</td>
<td>225</td>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Suite Novotel Jakarta P PK</td>
<td>4-star</td>
<td>North Jakarta</td>
<td>220</td>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Aston Sunter Hotel</td>
<td>4-star</td>
<td>North Jakarta</td>
<td>150</td>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Yello Hotel Hayam Wuruk</td>
<td>3-star</td>
<td>Central Jakarta</td>
<td>372</td>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>ibis Styles Jakarta P PK</td>
<td>3-star</td>
<td>South Jakarta</td>
<td>200</td>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Harper TB Simatupang</td>
<td>3-star</td>
<td>South Jakarta</td>
<td>180</td>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Prim a Hotel</td>
<td>3-star</td>
<td>Central Jakarta</td>
<td>150</td>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Whiz Prime Hayam wuruk</td>
<td>3-star</td>
<td>Central Jakarta</td>
<td>100</td>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>InterContinental Jakarta Pondok Indah Hotel</td>
<td>5-star</td>
<td>South Jakarta</td>
<td>470</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>JW Marriott Kemang Village</td>
<td>5-star</td>
<td>South Jakarta</td>
<td>275</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>JW Marriott St Moritz</td>
<td>5-star</td>
<td>West Jakarta</td>
<td>208</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>The Langham District8 @ Lot28 SCBD</td>
<td>5-star CBD</td>
<td>200</td>
<td>2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Park Hyatt Hotel</td>
<td>5-star</td>
<td>Central Jakarta</td>
<td>150</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Morrissey Hotel</td>
<td>4-star</td>
<td>Central Jakarta</td>
<td>343</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Novotel Ickni</td>
<td>4-star</td>
<td>Central Jakarta</td>
<td>286</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Grand Clarion Jakarta</td>
<td>4-star</td>
<td>East Jakarta</td>
<td>272</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Prim a Gato Soebroto Kemang</td>
<td>4-star</td>
<td>South Jakarta</td>
<td>200</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Aloft Wahid Hasym</td>
<td>4-star</td>
<td>Central Jakarta</td>
<td>170</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Mercure Hotel Merlinan</td>
<td>4-star</td>
<td>South Jakarta</td>
<td>150</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Hotel Santika Prem ier Yos Sudarso</td>
<td>4-star</td>
<td>North Jakarta</td>
<td>150</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Aloft Kebon Jeruk</td>
<td>4-star</td>
<td>West Jakarta</td>
<td>140</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>ibis Styles Tanah Abang</td>
<td>3-star</td>
<td>Central Jakarta</td>
<td>225</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Hotel Pasar Senen</td>
<td>3-star</td>
<td>Central Jakarta</td>
<td>200</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Grand Zuri Mangga Dua</td>
<td>3-star</td>
<td>Central Jakarta</td>
<td>130</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Holiday Inn Express Simatupang</td>
<td>3-star</td>
<td>South Jakarta</td>
<td>110</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Des Indes Boutique Hotel</td>
<td>3-star</td>
<td>Central Jakarta</td>
<td>97</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Sofitel</td>
<td>5-star CBD</td>
<td>212</td>
<td>2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Aryaduta - Holland Village</td>
<td>5-star</td>
<td>Central Jakarta</td>
<td>180</td>
<td>2018</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Regent</td>
<td>5-star CBD</td>
<td>127</td>
<td>2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>W Hotel @ Ciputra World Jakarta 2</td>
<td>5-star CBD</td>
<td>126</td>
<td>2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Jami a Centre</td>
<td>4-star</td>
<td>North Jakarta</td>
<td>180</td>
<td>2018</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Mercure Kemang</td>
<td>4-star</td>
<td>South Jakarta</td>
<td>80</td>
<td>2018</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Santika TB Simatupang</td>
<td>3-star</td>
<td>South Jakarta</td>
<td>160</td>
<td>2018</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Regis</td>
<td>5-star CBD</td>
<td>280</td>
<td>2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Waldorf Astoria</td>
<td>5-star CBD</td>
<td>181</td>
<td>2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Aloft Jakarta Simatupang</td>
<td>4-star</td>
<td>South Jakarta</td>
<td>180</td>
<td>2019</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Radisson RED Jakarta</td>
<td>4-star CBD</td>
<td>36</td>
<td>2019</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

出所）Minister of Industry, 2016. Presentation on 14 Priority Industrial Estates
5-1-3. 関連規制の整理
事業展開を進めるにあたっての各関連規制はこれまで議論してきた通りである。事業にかかる規制は第1章の1-5ビジネス環境の分析にて、環境にかかる規制は第3章にて詳細を議論しているため参照願いたい。
5－2．事業展開の方向性
5－2－1．ビジネススキームの検討

（1）官需・民需へのアプローチ方法の整理
官需ならびに民需へのアプローチ方法を改めて整理する。官需においては、現在進められている集中処理で賄うことが難しい地域において、分散処理として導入を進めていきたいと考えている。バイオアルシーが最も効果的に維持管理ができる規模として、市町村単位（特に5～10万人規模）で推進したいと考えている。バイオアルシーは集中処理よりも規模は小さいながら、セプティック・タンクでは処理が間に合わない中規模の下水処理設備として効果を発揮できるものと考えている。

民需においては大型の下水処理設備が必要とされる工業団地、各工場、商業施設、集合住宅、ホテルなどを主な対象として考えている。既に議論を進めてきた通り、各インタビューからは既存の下水処理設備に対し、特に課題を感じていない場合も多い。そのため、既存設備からバイオアルシーへリプレイスする動機が働きにくいのが現状である。一方、バイオアルシーにおける省スペース、省エネ（電気代）、省コスト（人件費、薬品代など）には高い関心を示していたことから、各業種における新規工場・施設建設時を狙い、アプローチを強化することで普及促進に努めていきたい。

（2）PD Pal Jayaとの連携強化
PD Pal Jayaは下水道の維持・管理機関であるが、第三者に処理を外部委託することも多いという。その第三者が下水処理の設備としてバイオアルシーを活用頂くスキームは可能と考えている。

特に、下水道関係の間合せは、まずPD Pal Jayaに連絡が出るケースも多いことから、連携強化を図ることでビジネスの種を入手できる可能性も高い。PD Pal Jayaとは継続的にコミュニケーションを行い、具体的な協業スキームについて普及・実証事業の中で検証を進めたい。

（3）支払方法の検討
販売方法についても柔軟に対応したい。各インタビューを通じ、初期費用の高さはしばしば議論に上がっていた。そこで、バイオアルシー施設自体を売却するのではなく、維持管理費用として月額支払方法を提案したところ、高い関心が示された。初期投資を抑えることで導入向けたハードルを下げることができる可能性も存在するため、事業展開における支払方法については顧客の状況に応じて柔軟に対応することとしたい。

5－2－2．事業展開推進体制の構築
インドネシアにて事業展開をスムーズに進めるため、現地法人の設立を進めている。現地法人は現地企業との合弁での設立を考えており、その機能としてバイオアルシーの建設ならびに運営管理を担うことを見定めている。
バイオアルシーの建設に必要な設備・機材は可能な限り現地調達にて賄う方針である。インドネシア国内経済への貢献と共に、コストダウンの実現により持続的な普及に努めたい。ただし、現地調達が難しい設備機器（機器の製造の心臓部の制御機器・測定器。耐久性が
必要なプロピラーやガードマーター・ポンプなど）については日本での調達を想定。価格
低減のため、タイにある日本アルシー工場（アマタナコン工場）にて組立加工を行い、イ
ンドネシアに輸出することも検討したい。
一方、水槽の建設や土木工事などに関し、インドネシア政府系列の現地の土木会社と協
業することを想定している。鋼板で製作する場合も同様に現地業者に製作を依頼すること
を想定している。機器の付け工事や電気工事や配管工事は現地の施業業者と協業する
予定。
運営管理について、日々のバイオアルシーの処理状況のモニタリングは現地との合弁企
業にて実施することを考えている。設備機器自体のメンテナンスについてはアウトソース
を軸に、頻度の高いメンテナンス部分については自社で従業員を確保し、メンテナンスス
ピードの向上を図りたいと考えている。

図 5-9 バイオアルシーの事業推進体制
出所）日本アルシー

5-2-3. 販売計画の検討
インドネシアの下水道処理にかかる環境改善、生活の質改善に向けて積極的に事業展開
していきたい。普及・実証事業にて各関係省庁を巻き込んだ普及検討委員会の中で、普及
方法について議論すると同時に、その具体的な案を持ってバイオアルシー設備の普及に繋
げたい。

13 2022年までの今後5年間において、75%の下水処理カバー率に対し、集中処理10%、コミュニーシ
ステム25%、その他分散処理40%となっている（Jakarta Sewage Development Review of Master Plan
Zone1 to Zone10）。仮に、その他分散処理40%のうち、半分の20%がバイオアルシーの対象市場（500以
上～10万人程度）とした場合、ジャカルタ人口約1,250万人×20%=約250万人の処理が必要。5万人
基規模のバイオアルシーを導入する場合、250万人÷5万人=50基のバイオアルシーが必要と想定。
表 5-5 バイオアルシープ販売計画（販売対象別）

<table>
<thead>
<tr>
<th>区分</th>
<th>直径16m</th>
<th>2年目</th>
<th>3年目</th>
<th>4年目</th>
<th>5年目</th>
</tr>
</thead>
<tbody>
<tr>
<td>単価</td>
<td>直径16m</td>
<td>2.0</td>
<td>2.1</td>
<td>2.1</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>直径10m</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>直径6m</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>販売数</td>
<td>ジャカルタ特別州</td>
<td>直径16m</td>
<td>2</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>他地域</td>
<td>直径16m</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>工業団地</td>
<td>直径16m</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>他民需</td>
<td>直径16m</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>直径10m</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>直径6m</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>売上</td>
<td>ジャカルタ特別州</td>
<td>直径16m</td>
<td>4.0</td>
<td>12.4</td>
<td>25.5</td>
</tr>
<tr>
<td></td>
<td>他地域</td>
<td>直径16m</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>工業団地</td>
<td>直径16m</td>
<td>0.0</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>他民需</td>
<td>直径16m</td>
<td>0.0</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>直径10m</td>
<td>0.0</td>
<td>0.8</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>直径6m</td>
<td>0.5</td>
<td>0.9</td>
<td>1.4</td>
<td>1.5</td>
</tr>
</tbody>
</table>

売上計 4.5 18.2 32.0 39.5 48.5

出所）日本アルシー
注1）単価のインフレ率はインドネシア中央銀行発表 2016 年を利用（3.02%）
注2）他民需には、各工場、商業施設、マンション、ホテルなどが含まれる

5-2-4 事業展開ステップ

今後、普及・実証事業に進む際には、現地法人を設立した上で、普及・実証事業の推進、ならびに、ビジネス展開を本格的に促進する予定。

事業展開の大きな流れとして、以下のステップを想定している。

① 普及・実証調査を踏まえジャカルタにおける生活排水インフラでの導入効果・展開可能性の検証（生活排水・し尿処理を中心に実施。ジャカルタにおけるバイオアルシープ法の導入効果を検証）

② ジャカルタ生活排水インフラにおける実績の積み重ね（官案件としてビジネスパートナーと協業）

③ 工場排水・商業排水・民間集合住宅などにおける生活排水処理への拡販（民間ベースでも事業拡大することで製造原価・販売経費の削減を図り、継続的な普及が可能にしていく）

④ ビジネスパートナーとの連携強化によるジャカルタ特別州以外への国内普及拡大に向けた環境整備

⑤ インドネシア国内への水平展開
5-2-5. 事業展開による開発効果
バイオアルシーの事業展開は官需だけでなく民需にも普及していく可能性が高い技術であり、官民の両面からジャカルタ下水道整備における開発課題の解決に寄与するものと考えられる。

① 下水道・し尿処理設備普及率の向上
官民両面からバイオアルシーによる下水道処理が促進されることで、ジャカルタ特別州全体として普及率の向上に繋がる。

② 下水道処理設備の整備促進への寄与による水質改善
これまで生活排水やし尿などの下水は直接川や海に流入するか、地下に染込んでいた状況であった。上記、バイオアルシーの普及が進むことによりジャカルタ特別州における水質改善に繋がる。

③ 狭い用地でも処理可能な下水処理施設の普及
普及・実証事業ならびに民間への拡販に伴い、狭い用地での処理能力についてジャカルタでの効果が検証されることとなる。その結果、人口密度が高く、渋滞も深刻なジャカルタにおける下水処理方法に一つの選択肢を追加することができる。

④ 初期投資・運営費用の抑制による下水道処理設備の普及速度向上
バイオアルシーは集中処理に比べ初期投資金額が少なく、管理運営コストも、電気代・薬品代・人件費・污泥除去費用など抑えることができる特長を有する。そのために、機動的に普及を進めることができると、下水処理設備の普及速度向上に寄与することができる。

⑤ 下水道費用徴収制度整備に向けた徴収金額事例の提供
バイオアルシーのビジネス展開拡大により、直接的に下水道費用徴収制度の整備に関わるものではないものの、実施の拡大により適切な下水道費用を検証することが可能となる。それら情報を可能な限り共有することにより、社会インフラとして下水道にかかる費用を受益者より徴収する仕組みの構築に寄与することができる。
5－3．事業展開におけるリスクと対策
バイオアルシーの事業展開に向けて、リスクとなりうるポイントは主に以下の2つと考えられる。

5－3－1．模倣リスク・流出リスク
バイオアルシー法は特許製品であり、事業展開において日本アルシーとして最も懸念するリスクは模倣リスク、技術の流出リスクである。バイオアルシーの技術は長年に亘る積み重ねにより日本アルシーが蓄積してきた技術であるため、模倣リスクは小さいと考えられる。しかしながら、事業の趣旨に鑑み、インフラ整備にかかる技術に関しては部分的に開放し、バイオアルシー法を利用した分散処理の普及に努めたいと考えるため、技術の流出に関しては大きなリスクとなりうる。そのため、知的財産保護の観点から模倣・技術流出防止に向けた対策を講じたい。その対策の一つとして、数多くの現地企業と協力関係を結ぶような業務提携ではなく、特定の現地企業と限定的に協力関係を結ぶため、合弁企業の設立を想定している。

5－3－2．カントリーリスク
インドネシアにおいては規制の変更、政治の混乱、為替変動など様々なカントリーリスクを負うこととなる。安定した収益基盤を確保し、下水道整備に向けて貢献していくため、常に現地情報にアレンナを張るだけでなく、官民合わせて多様な顧客層に展開することでリスクを分散させたいと考える。

105
This feasibility survey aims to clearly define the demonstration process pertaining to BIOALSI, Japan ALSi’s unique waste water treatment system, in the Republic of Indonesia (hereafter referred to as “Indonesia”) for ensuring its contribution to the improvement of water environment in developing countries.

The overview of this report is summarized as follows.

Chapter 1 Current situation of the targeted country/region

Chapter 1 summarizes the background of the survey and the current situation of the targeted country, namely Indonesia, and discusses the identified development issues.

Background of the survey/Current situation of the targeted country

Indonesia is one of the major countries in ASEAN with largest population and land area. As such its steadfast development is considered indispensable for the stabilization and prosperity of the whole of Asia. Japan’s Country Assistance Policy for Indonesia, which was enacted in 2012, prioritizes the “assistance for Indonesia’s well-balanced development, enhancement of capacity to address issues of the Asian region and international society, based on which Japan has been supporting infrastructure development of the metropolitan area of the country.

The sewerage coverage of Indonesia still stays at 2%, which is lower when compared with that of other ASEAN countries. As the country experiences notable population growth and accumulation of commercial business as the economy grew fast, Special Capital City District of Jakarta (hereafter referred to as “Jakarta”) lags behind in developing urban infrastructure such as transportation, water supply and sewerage treatment services. The sewerage coverage as of 2016 is mere 4% in Jakarta. Contamination of public water bodies and underground water has been degrading the water environment of the city, and causing serious health issues. Building and disseminating sewerage treatment facility is considered as an urgent issue for the city to remove the cause of the contamination and improve its water environment.

Government of Indonesia shows its strong initiative to establish infrastructure such as sewerage treatment under “National Mid-Term Development Plan (RPJMN: 2015-2019)”. Government of Jakarta has set its short-, mid- and long-term targets for sewerage system coverage in 2020, 2030, and 2050 respectively, and has planned to build sewerage system in the designated 15 zones in the city, prioritizing Zone 1, which covers the center of Jakarta, and its nearby Zone 6. However, the area outside the 15 zones are left exposed to continued water pollution.

Under such situation, Japan ALSi, Co., Ltd. implemented this survey to identify possible contribution that its BIOALSI can make in the improvement of water environment through dissemination of its BIOALSI, and define the process toward implementation of a demonstration project.
Development Issues

Jakarta, while being one of the biggest cities in the world, has low sewerage coverage and the quality of river, sea and groundwater has deteriorated over the years. Although the city has facilities to treat sewerage and excreta disposal, the high population density has been barriers in securing necessary land and expanding conduit work necessary for expansion of sewerage system. Given the above, this survey identified following social and economic development issues facing Jakarta;

1) Low adoption rate of sewerage and excreta disposal treatment facility;
2) Degraded water environment due to immature sewerage system development;
3) Difficulties in land acquisition and implementation of conduit work;
4) Possible delay in sewerage system development due to high construction costs; and,
5) Infeasibility of sustainable operation of sewerage system due to immature system to collect sewerage treatment fee.

Chapter 2 Characteristics of the equipment/technology and strategy for overseas business development

Chapter 2 outlines the technological characteristics and track records of BIOALSI, and Japan ALSi’s contribution to the development of local economies in Japan.

Advantages of the Products/Technology

The overview of the advantages of BIOALSI is summarized in the following table;

<table>
<thead>
<tr>
<th>Technology</th>
<th>High-efficient microbial sewerage treatment facility “BIOALSI”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification</td>
<td>“BIOALSI” is cylindrical shape of high-efficient microbial sewerage treatment facility, combining the function of anaerobic, aerobic, and sedimentation tank. Basic specification of BIOALSI is as follows;</td>
</tr>
<tr>
<td></td>
<td>① Acceptable load of raw water (BOD～10,000mg/L, COD～10,000mg/L)</td>
</tr>
<tr>
<td></td>
<td>② Treatment efficiency/removal rate (BOD 95～99%, COD 90～99%)</td>
</tr>
<tr>
<td></td>
<td>③ Surface Loading Rate (40～70m³/m²-day)</td>
</tr>
<tr>
<td></td>
<td>④ Required facility and equipment (Feed pump, blower, agitator, screen hydrator)</td>
</tr>
<tr>
<td></td>
<td>⑤ Operation method (remote monitoring system, unattended automatic operation)</td>
</tr>
</tbody>
</table>

Advantages	① Highly efficient treatment, which enables nearly zero excess-sludge discharge
	② Highly stabilized treatment efficiency with high adjustability to load and water-flow change
	③ Less area required and no odor discharged, which give high flexibility in selecting location
	④ Lower construction costs with less buildings and necessary equipment
	⑤ Lower operation costs with no adding agents no excess-sludge treatment fee
Expected Contribution to Local Economies in Japan

Following are major contributions to local economies in Japan that can be expected through wide dissemination of BIOALSI;

1) Contribution to development of the parts industry

Core equipment of BIOALSI, such as motors, agitators, electric instrument equipment, measurement equipment, sensors, and robust blower and pump, needs to be procured in Japan to secure its performance. Therefore, dissemination of BIOALSI can contribute to the increase in sales and generation of new employment of related manufacturing industry in Japan.

2) Contribution to other ASEAN countries

Issues related to sewerage treatment identified in Indonesia, such as immature treatment fee collection system, insufficient budget, discharged treated water over the designated safety standard, are considered commonly observed in other developing countries. BIOALSI has huge potential to be an effective solution to water pollution attributable to domestic and industrial waste water in Indonesia and other ASEAN countries, which also contributes to accelerate vitalization of local economies in Japan.
Chapter 3 Review result of survey and feasibility

In Chapter 3, it analyzed a current situation of Jakarta Sewerage System Development Plan, applicable regulations and standards, and compatibility of BIOALSI. The JICA feasibility survey team has conducted site visits to BIOALSI for our possible counterpart and promoted their better understanding of our mission. Furthermore, both parties are proceeding to a discussion of possible location for BIOALSI’s verification project.

Current situation of Jakarta Sewerage System Development Plan

Having a progress of “The National Capital Integrated Coastal Development (NCICD)” which is developed from Jakarta Sewerage System Development Plan (Masterplan) in 2012 promoted by JICA, its sewerage system development plan has been also revised. The scope of NCICD includes not only a harbor development, but also a construction plan of an industrial estate and a sport facility in the harbor area. Following to this development plan, its sewerage system is also planned accordingly, targeting 75% sewerage coverage by 2022. This further affected to a revision of JICA masterplan and a study of PD Pal Jaya. Currently, the 75% coverage of sewerage system consists of off-site treatment system with 65% and on-site treatment system with 10%.

Regulation and Standard Development

Effluent standard is defined with Environmental and Forestry Ministerial Decree Number 68 in 2016 regarding water quality standard for sewerage (implementation and issued date is September 2, 2016). In this regulation, it becomes clear that general sewerage discharged from houses shall be treated by appropriate sewerage treatment facility provided and implemented by the central government or the local government.

There are no administrative sanction and penalty stated in Environmental and Forestry Ministerial Decree Number 68 in 2016 and Environmental Ministerial Decree Number 5 in 2014. Instead, it is stated on an upper law of these regulations, Law Number 32 in 2009 regarding environmental protection and management.

Concerning a fee collection system of sewerage and human excrement, PD Pal Jaya which is a public corporation of sewerage system, collect a sewerage treatment fee and a connection fee of public sewerage pipes based on Jakarta Gubernatorial Decree Number 991 in 2012. PD Pal Jaya implements and manages waste water treatment facilities outsourced by public sector or any private sector entities.

Technologies which are introduced to a waste water treatment facility should obtain a “certification of manufacturing a waste water treatment facility” in case of a waste water treatment facility is built under a public project. This certification is processed and issued by Research and Development Center for Housing under the Ministry of Public Works and Public Housing (Pusat Penelitian dan Pengembangan Pemukiman (PUSKIM)).

In addition, the survey also identified a capacity certification system for environment-friendly technology in purpose of promoting a dissemination of environmental technology, technology innovation, and bridging between technology providers and users.
Actual Situation of Implementation and Analysis of Compatibility for BIOALSI

In this study, three points are found out in the implementation of sewerage system management; “there is no operators and no proper maintenance”, “current regulations are insufficient for a fee collection system of sewerage treatment and it is only implemented by PD Pal Jaya”, and “there are revised waste water quality standard with Environmental Ministerial Decree Number 68 in 2016, but not as same level as that of developed countries yet”.

Above points can be all supplemented by characteristics of BIOALSI which are ① high treatment capacity in a narrow land, ② reduction of pre-treatment cost, ③ reduction of labor cost and facility related cost by reducing an amount of sludge, and ④ stable treatment capacity durable to load and water amount fluctuation.

Result of BIOALSI Site-Visit

To promote a better understanding of BIOALSI’s feasibility concerning revealed issues of sewerage treatment in Indonesia, a site-visit of BIOALSI was conducted twice for relevant stakeholders in Indonesia. As a result, all participants could understand better about characteristics of BIOALSI and a proposal of verification facility. Further, it enhanced their willingness to cooperate on implementation of a dissemination and verification project.

Review of Possible Implementation Area

In regard of a possible implementation area of the dissemination and verification project, it is reviewed with following 4 selection criteria; ① an outside area of centralized treatment under Jakarta Sewerage Development Plan, ② possible to connect to a treatment facility by pipes and septic tank trucks, ③ possible to build newly or build beside an existing facility, ④ recommendation by a counterparty. As a result, Malakasari sewerage treatment site, introduced by DSDA, is selected as a possible location of the dissemination and verification project that meet above criteria.

Chapter 4 Feasible Proposal Regarding ODA

Given these reviews, it is discussed in Chapter 4 about an outline of the dissemination and verification project with ODA scheme.

In proceeding to the dissemination and verification project, the JICA study team has conducted intensive discussions with DSDA who can be a counterparty of the project and made a detail implementation plan. The team has obtained an area map of Malakasari waste water treatment site from DSDA and prepared a construction plan of BIOALSI. It is confirmed by DSDA that the location is owned, implemented and managed by DSDA, so possible to lend the land for free. It is also mentioned that DSDA will prepare for a budget application of necessary electric power and labor cost according to relevant regulations after realization of an asset transfer of BIOALSI. There is also a request by DSDA that this budget matter shall be
mentioned in MoM which will be coordinated between JICA and PUPR for smooth budget realization.

In dissemination of BIOALSI, it is necessary to have coordination among relevant ministries. Therefore, it is considered to launch a dissemination promotion committee to implement BIOALSI’s dissemination and verification project. Several parties such as KPPIP, INKINDO, IATPI and others have verbally agreed to participate in the committee and exchange information.

<table>
<thead>
<tr>
<th>Outline of the Dissemination and Verification Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Country / Location</td>
</tr>
<tr>
<td>2. Subject Area</td>
</tr>
<tr>
<td>3. Background</td>
</tr>
<tr>
<td>4. General description of a proposed product or technology</td>
</tr>
</tbody>
</table>
2) Strong against load and water amount fluctuations, **highly stable treatment capacity**
3) **Smaller area, no odor**, and applicable to many locations
4) Smaller number of necessary constructions and equipment, therefore **cheaper construction cost**
5) No need of medicines and sludge treatment fee. Lower electric power and **a total operation cost is cheaper**
6) Remote control system (automatic operation without operator) and **easy operation management**
7) Utilizing only versatile equipment, therefore **easy for maintenance**

<table>
<thead>
<tr>
<th>5. Expected Achievement</th>
<th>In next Dissemination and Verification project, we would like to set 4 main achievements to solve 5 development issues.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>Improvement of water quality with effective waste water treatment (For Development Issue No.2)</td>
</tr>
<tr>
<td></td>
<td>- Verify water quality improvement with investigating the quality of in-flow and out-flow at waste water treatment plant in Indonesia.</td>
</tr>
<tr>
<td>2)</td>
<td>Feasibility to implement waste water treatment within narrow space (For Development Issue No.3)</td>
</tr>
<tr>
<td></td>
<td>- Verify waste water treatment plant function and capability within limited space. Besides, verify the influence for citizens related to fetidness and noise.</td>
</tr>
<tr>
<td>3)</td>
<td>Cost down of initial investment and operating expense (For Development Issue No.4)</td>
</tr>
<tr>
<td></td>
<td>- Verify its effectiveness and efficiency with the result of initial investment, operating expense, water improvement verification and feasibility within limited place.</td>
</tr>
<tr>
<td>4)</td>
<td>Creating environment for citizen’s quality of life (For Development Issue No.1 & 5)</td>
</tr>
<tr>
<td></td>
<td>- With the result of above 3 achievement and existing JICA project, discuss the effective operating scheme after this project, and scheme for sewerage treatment fee collection. Then, develop action plan for next step after the project.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. Counterpart Organization (Government organization)</th>
<th>DSDA : Dinas Sumber Daya Air (Grater Jakarta Provincial Government)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>※ Collaborate with PUPR (Ministry of Public Works and Housing), BAPPEDA (Jakarta Regional Development Planning Agency) and related organization</td>
</tr>
</tbody>
</table>

| 7. Beneficiary Group | All income layer from low-income until affluent is the beneficiary |
Chapter 5 Action Plan for Future Business

Given these reviews, it is discussed in Chapter 5 about business market trend and business plan with risk-hedge plan.

Market Trend
Japan ALSi will set as customer both public sector and private sector.
1) Business plan for public sector
 In government sector, Japan ALSi aims to provide its service for municipalities which is not suitable for centralized treatment system (BIOALSI system is appropriate for the municipalities with 50,000 ~ 100,000 population where septic tank is not enough for its sewerage treatment). Therefore, it is necessary to have the opportunity for further discussion about the scheme for expanding its utilization under next ODA project.

2) Business plan for private sector
 In private sector, the facility which is required to own its waste water treatment plant, such as industrial park, large factory, commercial facility, residential area, hotel, etc. is the target for BIOALSI system. According to the interviews, Japan ALSi identified the demand especially for reducing the space, utility expense, and operating cost. Therefore, Japan ALSi will set its target with its advantage for customer’s demand.

Overview of Business Plan
Main approach for above public sector and private sector is as follows.
1) Clarify the scheme for expanding its advantage for public and private sector under next ODA Project.
2) Accumulate the experience in Indonesia related to sewage system
3) Explore the private sector especially for the factory, commercial facility, residential apartment.
4) Reduction of manufacturing cost and marketing cost.
5) Establish collaboration scheme beyond DKI Jakarta.
6) Spread out for waste water treatment in Indonesia.

Risk Management under Business Plan

Following 2 points has been identified as possible risk under business plan.

1) Copyright Risk

BIOALSI system is patent protected system. Therefore, main potential risk for Japan ALSi is copyright risk. On the other hand, as BIOALSI system is the technology with experiences and know-how of Japan ALSi accumulated over a few decades, the risk of copyright is estimated as slightly small.

Even Japan ALSi has the concern for copyright risk, they will open some part of the patent to expand BIOALSI system utilization and contribute Indonesia’s sewerage treatment system. To avoid the technology to be unintentionally spread out, they will plan to collaborate certain specific local partner.

2) Country Risk

In Indonesia, there are still some country risk such as regulation change, insecurity government, fluctuations in foreign exchange, etc. To hedge its risk, Japan ALSi will contribute the various segment customer both in public and private sector.
Feasibility Survey with the Private Sector for Utilizing Japanese Technologies in ODA Projects
Indonesia, Feasibility survey for an application of microbial treatment equipment “BIOALSI” to sewage treatment and excreta disposal

SMEs and Counterpart Organization
- Name of SME: Japan ALSi Co., Ltd.
- Location of SME: Mie Pref., Japan
- Survey Site • Counterpart Organization: Greater Jakarta • DSDA

Concerned Development Issues
- Lower coverage ratio of sewage treatment and excreta disposal facilities
- Serious declining quality of river and underground water
- Difficulty of site procurement due to dense population
- Difficulty of securing source of revenues and insufficient sewage fee collection system

Products and Technologies of SMEs
- Microbial treatment equipment which efficiently decrease sludge with cultured microbial
- Able to build in a narrow site with affordable cost
- Able to cut costs of pre-treatment, sludge related equipment and facility, and labor costs
- Stable treatment endurable for fluctuation of water volume and load

Proposed ODA Projects and Expected Impact
- “Dissemination and verification survey” is proposed after completion of this feasibility survey. In the proposed survey, it is expected to verify Bioalsi’s capacity through an uninterrupted operation. Moreover, it is expected to build a bridge of further dissemination in Indonesia by indicating the Bioalsi’s verified quantitative results.
- By establishing Bioalsi facilities, it is expected to decentralize effluent treatment. It will decrease a load of existing sewage treatment facilities and a burden of environmental effect.
- By upgrading effluent treatment of areas outside of sewerage installation planning, it is expected to improve the quality of life for residents in such areas.
別添資料

＜別添図1＞ ジャカルタ特別州政府組織図（2016年12月21日付）
出所）ジャカルタ特別州政府